Page 296 - УДК
P. 296
296
P. 1885–1890.
82. Chen X. et al. Study of the cofactor conditions: Conditions of supercompatibility
between phases // J. Mech. Phys. Solids. Pergamon, 2013. Vol. 61, № 12. P.
2566–2587.
83. Delville R. et al. Transmission electron microscopy study of phase compatibility
in low hysteresis shape memory alloys // Philos. Mag. Taylor & Francis, 2010.
Vol. 90, № 1–4. P. 177–195.
84. Shi H. et al. Microstructural dependence on middle eigenvalue in Ti–Ni–Au // J.
Alloys Compd. Elsevier, 2014. Vol. 582. P. 703–707.
85. Андрейків О.Є., Гембара О.В. Механіка руйнування та довговічність
металевих матеріалів у водневмісних середовищах. Київ: Наук. думка,
2008. 420 p.
86. Dmytrakh I., Leshchak R., Syrotyuk A. Effect of environmental composition on
fatigue crack growth and hydrogen permeation in carbon pipeline steel // Lecture
Notes in Civil Engineering. Springer, 2021. Vol. 102. P. 145–159.
87. Student O.Z. et al. Effect of high-temperature degradation of heat-resistant steel
on the mechanical and fractographic characteristics of fatigue crack growth //
Mater. Sci. 1999. Vol. 35, № 4. P. 499–508.
88. Lobanov L.M., Makhnenko V.. ., Poznyakov V.D. Effect of diffusive hydrogen
and residual stresses on cold cracking in welding of low-Alloy high-strength
steels // 18TH EUROPEAN CONFERENCE ON FRACTURE: FRACTURE OF
MATERIALS AND STRUCTURES FROM MICRO TO MACRO SCALE .
ECF 2010. Dresden, 2010.
89. Runciman A. et al. Effects of hydrogen on the phases and transition temperatures
of NiTi // Proc. of int. conf. on Shape Memory and Superelastic Technologies /
ed. Berg B., Mitchell M.R., Proft J. California, USA: Pacific Grove, 2006. P.
185–196.
90. Effects of Hydrogen in TiNi // Proc. of int. conf. on Shape memory and
superelastic technologies / ed. Pelton A.R., Al. E. California, USA: Pacific
Grove, 1997. P. 395–400.