Page 292 - УДК
P. 292
292
37. Yang J.H., Wayman C.M. Self-accomodation and shape memory mechanism of
ϵ-martensite — II. Theoretical considerations // Mater. Charact. Elsevier, 1992.
Vol. 28, № 1. P. 37–47.
38. Uehara T., Tamai T. An Atomistic Study on Shape-Memory Effect by Shear
Deformation and Phase Transformation // Mech. Adv. Mater. Struct. Taylor &
Francis, 2006. Vol. 13, № 2. P. 197–204.
39. Wang F.E., Pickart S.J., Alperin H.A. Mechanism of the TiNi martensitic
transformation and the crystal structures of TiNi-II and TiNi-III phases // J. Appl.
Phys. 1972. Vol. 43, № 1. P. 97–112.
40. Thompson S.A. An overview of nickel-titanium alloys used in dentistry // Int.
Endod. J. Blackwell Science Ltd, 2000. Vol. 33, № 4. P. 297–310.
41. Fernandes D.J. et al. Understanding the Shape-Memory Alloys Used in
Orthodontics // ISRN Dent. International Scholarly Research Network, 2011.
Vol. 2011. P. 132408.
42. Saburi T., Yoshida M., Nenno S. Deformation behavior of shape memory TiNi
alloy crystals // Scr. Metall. Pergamon, 1984. Vol. 18, № 4. P. 363–366.
43. Otsuka K. et al. Superelasticity effects and stress-induced martensitic
transformations in CuAlNi alloys // Acta Metall. 1976. Vol. 24, № 3. P. 207–226.
44. https://worldofmaterials.ru/spravochnik/special-materials/138-splavy-s-
effektom-pamyati [Electronic resource].
45. Miller D.A., Lagoudas D.C. Thermomechanical characterization of NiTiCu and
NiTi SMA actuators: influence of plastic strains // Smart Mater. Struct. 2000.
Vol. 9, № 5. P. 640.
46. Maletta C. et al. Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting
and hysteresis under cyclic tensile loading // Int. J. Fatigue. Elsevier, 2014. Vol.
66. P. 78–85.
47. Li Y.F. et al. Thermo-mechanical cyclic transformation behavior of Ti–Ni shape
memory alloy wire // Mater. Sci. Eng. A. Elsevier, 2009. Vol. 509, № 1–2. P. 8–
13.
48. Scirè Mammano G., Dragoni E. Functional fatigue of Ni–Ti shape memory wires