Page 293 - УДК
P. 293
293
under various loading conditions // Int. J. Fatigue. Elsevier, 2014. Vol. 69. P. 71–
83.
49. Fischer F.D. et al. Transformation induced plasticity revised an updated
formulation // Int. J. Solids Struct. Pergamon, 1998. Vol. 35, № 18. P. 2209–
2227.
50. Miyazaki S. et al. Effect of cyclic deformation on the pseudoelasticity
characteristics of Ti-Ni alloys // Metall. Trans. A. Springer-Verlag, 1986. Vol.
17, № 1. P. 115–120.
51. Matsumoto H. Effects of thermal cycling and annealing on the martensitic
transformation of cold-rolled Ni48Ti52 alloy // Mater. Lett. North-Holland, 1991.
Vol. 11, № 1–2. P. 40–42.
52. Filip P., Mazanec K. Influence of work hardening and heat treatment on the
substructure and deformation behaviour of TiNi shape memory alloys // Scr.
Metall. Mater. Pergamon, 1995. Vol. 32, № 9. P. 1375–1380.
53. Kimiecik M., Jones J.W., Daly S. The effect of microstructure on stress-induced
martensitic transformation under cyclic loading in the SMA Nickel-Titanium //
J. Mech. Phys. Solids. Elsevier, 2016. Vol. 89. P. 16–30.
54. Bhattacharya K. Microstructure of martensite : why it forms and how it gives rise
to the shape-memory effect. Oxford University Press, 2003. 288 p.
55. Miyazaki S. et al. Shape memory effect and pseudoelasticity in a TiNi single
crystal // Scr. Metall. Pergamon, 1983. Vol. 17, № 9. P. 1057–1062.
56. Bhattacharya K., Kohn R.V. Symmetry, texture and the recoverable strain of
shape-memory polycrystals // Acta Mater. Pergamon, 1996. Vol. 44, № 2. P.
529–542.
57. Hane K.F., Shield T.W. Microstructure in the cubic to monoclinic transition in
titanium–nickel shape memory alloys // Acta Mater. Pergamon, 1999. Vol. 47,
№ 9. P. 2603–2617.
58. Matsumoto O. et al. Crystallography of martensitic transformation in Ti Ni
single crystals // Acta Metall. Pergamon, 1987. Vol. 35, № 8. P. 2137–2144.
59. Eggeler G. et al. Structural and functional fatigue of NiTi shape memory alloys