Page 294 - УДК
P. 294
294
// Mater. Sci. Eng. A. Elsevier, 2004. Vol. 378, № 1–2. P. 24–33.
60. Kang G. Advances in transformation ratcheting and ratcheting-fatigue interaction
of NiTi shape memory alloy // Acta Mech. Solida Sin. Elsevier, 2013. Vol. 26,
№ 3. P. 221–236.
61. Kang G. et al. Ratchetting deformation of super-elastic and shape-memory NiTi
alloys // Mech. Mater. Elsevier, 2009. Vol. 41, № 2. P. 139–153.
62. Kim K., Daly S. Martensite Strain Memory in the Shape Memory Alloy Nickel-
Titanium Under Mechanical Cycling // Exp. Mech. 2011. Vol. 51, № 4. P. 641–
652.
63. Kumar P.K. et al. The influence of stress and temperature on the residual strain
generated during pseudoelastic cycling of NiTi SMA wires / ed. Ounaies Z.,
Seelecke S.S. 2011. P. 79781E.
64. Norfleet D.M. et al. Transformation-induced plasticity during pseudoelastic
deformation in Ni–Ti microcrystals // Acta Mater. Pergamon, 2009. Vol. 57, №
12. P. 3549–3561.
65. Pelton A.R. Nitinol Fatigue: A Review of Microstructures and Mechanisms // J.
Mater. Eng. Perform. 2011. Vol. 20, № 4. P. 613–617.
66. Richards A.W., Lebensohn R.A., Bhattacharya K. Interplay of martensitic phase
transformation and plastic slip in polycrystals // Acta Mater. Pergamon, 2013.
Vol. 61, № 12. P. 4384–4397.
67. Yamamoto H. et al. Fatigue properties of NiTi shape-memory alloy thin plates /
ed. Goulbourne N.C., Naguib H.E. 2013. P. 86890S.
68. Pelton A.R. et al. Fatigue and durability of Nitinol stents // J. Mech. Behav.
Biomed. Mater. 2008. Vol. 1, № 2. P. 153–164.
69. Robertson S.W., Pelton A.R., Ritchie R.O. Mechanical fatigue and fracture of
Nitinol // Int. Mater. Rev. 2012. Vol. 57, № 1. P. 1–37.
70. Stebner A.P. et al. Micromechanical quantification of elastic, twinning, and slip
strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium
during large uniaxial deformations measured via in-situ neutron diffraction // J.
Mech. Phys. Solids. Pergamon, 2013. Vol. 61, № 11. P. 2302–2330.