Page 291 - УДК
P. 291
291
25. Yokoyama K. et al. Hydrogen embrittlement of Ni-Ti superelastic alloy in
fluoride solution // J. Biomed. Mater. Res. Wiley Subscription Services, Inc., A
Wiley Company, 2003. Vol. 65. P. 182–187.
26. Yokoyama K. et al. Delayed fracture of Ni-Ti superelastic alloys in acidic and
neutral fluoride solutions // J. Biomed. Mater. Res. Wiley Subscription Services,
Inc., A Wiley Company, 2004. Vol. 69A. P. 105–113.
27. Yokoyama K. et al. Hydrogen embrittlement of work-hardened Ni–Ti alloy in
fluoride solutions // Biomaterials. Elsevier, 2005. Vol. 26, № 1. P. 101–108.
28. Lee J.H. et al. Thermomechanical study of Ni-Ti alloys // J. Biomed. Mater. Res.
John Wiley & Sons, Inc., 1988. Vol. 22, № 6. P. 573–588.
29. Nikolai R.J. Orthodontic wire: a continuing evolution // Semin. Orthod. 1997.
Vol. 3. P. 157–165.
30. Morgan N.B. Medical shape memory alloy applications - The market and its
products // Mater. Sci. Eng. A. 2004. Vol. 378, № 1-2 SPEC. ISS. P. 16–23.
31. Ozbulut O.E., Hurlebaus S., Desroches R. Seismic response control using shape
memory alloys: A review // J. Intell. Mater. Syst. Struct. 2011. Vol. 22, № 14. P.
1531–1549.
32. Torra V. et al. The SMA: An Effective Damper in Civil Engineering that
Smoothes Oscillations // Mater. Sci. Forum. 2012. Vol. 706–709, № July 2015.
P. 2020–2025.
33. Isalgue A. et al. SMA for Dampers in Civil Engineering // Mater. Trans. 2006.
Vol. 47, № 3. P. 682–690.
34. Eggeler G. et al. Structural and functional fatigue of NiTi shape memory alloys
// Mater. Sci. Eng. A. 2004. Vol. 378, № 1-2 SPEC. ISS. P. 24–33.
35. Yang J.H., Wayman C.M. Self-accomodation and shape memory mechanism of
ϵ-martensite—I. Experimental observations // Mater. Charact. Elsevier, 1992.
Vol. 28, № 1. P. 23–35.
36. Ren X. et al. A comparative study of elastic constants of Ti–Ni-based alloys prior
to martensitic transformation // Mater. Sci. Eng. A. Elsevier, 2001. Vol. 312, №
1–2. P. 196–206.