Page 291 - УДК
P. 291

291

               25.  Yokoyama  K.  et  al.  Hydrogen  embrittlement  of  Ni-Ti  superelastic  alloy  in

                      fluoride solution // J. Biomed. Mater. Res. Wiley Subscription Services, Inc., A

                      Wiley Company, 2003. Vol. 65. P. 182–187.

               26.  Yokoyama K. et al. Delayed fracture of Ni-Ti superelastic alloys in acidic and

                      neutral fluoride solutions // J. Biomed. Mater. Res. Wiley Subscription Services,

                      Inc., A Wiley Company, 2004. Vol. 69A. P. 105–113.

               27.  Yokoyama K. et al. Hydrogen embrittlement of work-hardened Ni–Ti alloy in

                      fluoride solutions // Biomaterials. Elsevier, 2005. Vol. 26, № 1. P. 101–108.

               28.  Lee J.H. et al. Thermomechanical study of Ni-Ti alloys // J. Biomed. Mater. Res.

                      John Wiley & Sons, Inc., 1988. Vol. 22, № 6. P. 573–588.

               29.  Nikolai R.J. Orthodontic wire: a continuing evolution // Semin. Orthod. 1997.

                      Vol. 3. P. 157–165.

               30.  Morgan N.B. Medical shape memory alloy applications  - The market and its

                      products // Mater. Sci. Eng. A. 2004. Vol. 378, № 1-2 SPEC. ISS. P. 16–23.

               31.  Ozbulut O.E., Hurlebaus S., Desroches R. Seismic response control using shape

                      memory alloys: A review // J. Intell. Mater. Syst. Struct. 2011. Vol. 22, № 14. P.

                      1531–1549.

               32.  Torra  V.  et  al.  The  SMA:  An  Effective  Damper  in  Civil  Engineering  that


                      Smoothes Oscillations // Mater. Sci. Forum. 2012. Vol. 706–709, № July 2015.
                      P. 2020–2025.


               33.  Isalgue A. et al. SMA for Dampers in Civil Engineering // Mater. Trans. 2006.
                      Vol. 47, № 3. P. 682–690.


               34.  Eggeler G. et al. Structural and functional fatigue of NiTi shape memory alloys
                      // Mater. Sci. Eng. A. 2004. Vol. 378, № 1-2 SPEC. ISS. P. 24–33.


               35.  Yang J.H., Wayman C.M. Self-accomodation and shape memory mechanism of

                      ϵ-martensite—I.  Experimental  observations  //  Mater.  Charact.  Elsevier,  1992.

                      Vol. 28, № 1. P. 23–35.

               36.  Ren X. et al. A comparative study of elastic constants of Ti–Ni-based alloys prior

                      to martensitic transformation // Mater. Sci. Eng. A. Elsevier, 2001. Vol. 312, №

                      1–2. P. 196–206.
   286   287   288   289   290   291   292   293   294   295   296