Page 299 - УДК
P. 299
299
Relaxation of Aged NiTi Shape Memory Alloys // Acta Phys. Pol. A. 2016. Vol.
129, № 4. P. 714–716.
113. Yokoyama K. et al. Strong interactions between hydrogen in solid solution and
stress-induced martensite transformation of Ni–Ti superelastic alloy // Philos.
Mag. Lett. Taylor & Francis, 2017. Vol. 97, № 1. P. 11–18.
114. Predki W., Klönne M., Knopik A. Cyclic torsional loading of pseudoelastic NiTi
shape memory alloys: Damping and fatigue failure // Mater. Sci. Eng. A. 2006.
Vol. 417, № 1–2. P. 182–189.
115. Gloanec A.L. et al. Fatigue crack initiation and propagation of a TiNi shape
memory alloy // Scr. Mater. Acta Materialia Inc., 2010. Vol. 62, № 10. P. 786–
789.
116. Kan Q. et al. Experimental observations on rate-dependent cyclic deformation of
super-elastic NiTi shape memory alloy // Mech. Mater. Elsevier, 2016. Vol. 97.
P. 48–58.
117. Pan Q., Cho C. Damping property of shape memory alloys // Metal. 2008. P. 1–
5.
118. Miyazaki S. et al. Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape
memory alloy wires // Mater. Sci. Eng. A. 1999. Vol. 273–275. P. 658–663.
119. Qiang P., Cho C. The Investigation of a Shape Memory Alloy Micro-Damper for
MEMS Applications // Sensors. 2007. Vol. 7. P. 1887–1900.
120. Araya R. et al. Temperature and grain size effects on the behavior of CuAlBe
SMA wires under cyclic loading. 2008. Vol. A496. P. 209–213.
121. Saleeb A.F., Padula S.A., Kumar A. A multi-axial, multimechanism based
constitutive model for the comprehensive representation of the evolutionary
response of SMAs under general thermomechanical loading conditions // Int. J.
Plast. 2011.
122. Shuang W. et al. Constitutive Modelling for Restrained Recovery of Shape
Memory Alloys Based on Artificial Neural Network // NeuroQuantology. 2018.
Vol. 16, № 5. P. 806–813.
123. Matsui R. et al. Influence of Strain Ratio on Bending Fatigue Life and Fatigue