Page 302 - УДК
P. 302

302

                      analysis. In: Risk and Failure Analysis for Improved Performance and Reliability

                      / ed. Weiss J.J.B.& V. New York: Plenum Publication Corp., 1980. P. 141–194.

               148.  Koh  S.K.,  Stephens  R.I.  Mean  stress  effects  on  low  cycle  fatigue  for  a  high

                      strength steel // Fatigue Fract. Eng. Mater.Struct. 1991. Vol. 14. P. 413–428.

               149.  Ince A., Glinka G. A modification of Morrow and Smith-Watson-Topper mean

                      stress correction models // Fatigue Fract. Eng. Mater. Struct. 2011. Vol. 34, №

                      11. P. 854–867.

               150.  Moumni Z., Van Herpen A., Riberty P. Fatigue analysis of shape memory alloys:

                      energy approach // Smart Mater. Struct. 2005. Vol. 14. P. S287–S292.

               151.  Song D. et al. Experimental observations on uniaxial whole-life transformation

                      ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy

                      micro-tubes // Smart Mater. Struct. 2015. Vol. 24, № 7. P. 075004.

               152.  Runciman A. et al. An equivalent strain/Coffin–Manson approach to multiaxial

                      fatigue and life prediction in superelastic Nitinol medical devices // Biomaterials.

                      2011. Vol. 32, № 22. P. 4987–4993.

               153.  Runciman A. et al. An equivalent strain/Coffin-Manson approach to multiaxial

                      fatigue and life prediction in superelastic Nitinol medical devices // Biomaterials.

                      2011.


               154.  Mahtabi M.J., Shamsaei N. A modified energy-based approach for fatigue life
                      prediction of superelastic NiTi in presence of tensile mean strain and stress // Int.


                      J. Mech. Sci. 2016. Vol. 117. P. 321–333.
               155.  Soul  H.,  Yawny  A.  Effect  of  Variable  Amplitude  Blocks’  Ordering  on  the


                      Functional Fatigue of Superelastic NiTi Wires // Shape Mem. Superelasticity.
                      Springer International Publishing, 2017. Vol. 3, № 4. P. 431–442.


               156.  Perry  K.,  And  A.T.-F.  and  F.M.M.M.,  2013  U.  Fatigue  crack  initiation  in

                      superelastic nitinol // astm.org.

               157.  Gupta S. et al. High compressive pre-strains reduce the bending fatigue life of

                      nitinol wire // J. Mech. Behav. Biomed. Mater. 2015. Vol. 44. P. 96–108.

               158.  Cheung G.S.P., Darvell B.W. Fatigue testing of a NiTi rotary instrument. Part 2:

                      fractographic analysis // Int. Endod. J. 2007. Vol. 40, № 8. P. 619–625.
   297   298   299   300   301   302   303   304   305   306   307