Page 300 - УДК
P. 300
300
Crack Growth in TiNi Shape-Memory Alloy Thin Wires // Mater. Trans. 2006.
Vol. 47, № 3. P. 759–765.
124. Bocciolone M. et al. Application of martensitic SMA alloys as passive dampers
of GFRP laminated composites // Frat. ed Integrita Strutt. 2012. Vol. 23. P. 34–
46.
125. Kashin O.A. et al. Dimensional stability of coarse-grained and
submicrocrystalline TiNi shape memory alloy for medical use under quasistatic
and cyclic bending // Procedia Struct. Integr. 2016. Vol. 2. P. 1514–1521.
126. Scirè Mammano G., Dragoni E. Functional fatigue of NiTi shape memory wires
for a range of end loadings and constraints // Frat. ed Integrita Strutt. 2012. Vol.
7, № 23. P. 25–33.
127. Casciati F., Casciati S., Faravelli L. Fatigue characterization of a Cu-based shape
memory alloy // Proc. Est. Acad. Sci. – Phys. Math. 2007. Vol. 56, № 2. P. 207–
217.
128. Kim Y. Fatigue Properties of the Ti-Ni Base Shape Memory Alloy Wire // Mater.
Trans. 2002. Vol. 43, № 7. P. 1703–1706.
129. Kang G., Song D. Review on structural fatigue of NiTi shape memory alloys:
Pure mechanical and thermo-mechanical ones // Theor. Appl. Mech. Lett. 2015.
Vol. 5, № 6. P. 245–254.
130. Matsui R. et al. Tensile Deformation and Rotating-Bending Fatigue Properties of
a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube
of NiTi Alloys // J. Eng. Mater. Technol. 2004. Vol. 126, № 4. P. 384–391.
131. Eggeler G. et al. Structural and functional fatigue of NiTi shape memory alloys
// Mater. Sci. Eng. A. Elsevier, 2004. Vol. 378, № 1–2. P. 24–33.
132. Kang G. et al. Whole-life transformation ratchetting and fatigue of super-elastic
NiTi Alloy under uniaxial stress-controlled cyclic loading // Mater. Sci. Eng. A.
Elsevier, 2012. Vol. 535. P. 228–234.
133. Iasnii V. et al. Experimental study of pseudoelastic NiTi alloy under cyclic
loading // Sci. J. TNTU. 2018. Vol. 92, № 4. P. 7–12.
134. Piedboeuf M.C., Gauvin R. Damping behaviour of shape memory alloys: strain