Page 301 - УДК
P. 301
301
amplitude, frequency and temperature effects // J. Sound Vib. 1998. Vol. 214. P.
885–901.
135. Auricchio F., Marfia S., Sacco E. Modelling of SMA materials: training and two
way memory effect. // Comput. Struct. 2003. Vol. 81. P. 2301–2317.
136. Abeyaratne R., Kim S.-J. Cyclic effects in shape-memory alloys: a one-
dimensional continuum model // Int. J. Solids Struct. Pergamon, 1997. Vol. 34,
№ 25. P. 3273–3289.
137. Tanaka K. et al. Phenomenological analysis on subloops and cyclic behavior in
shape memory alloys under mechanical and/or thermal loads // Mech. Mater.
Elsevier, 1995. Vol. 19, № 4. P. 281–292.
138. Moumni Z., Zaki W., Maitournam H. Cyclic Behavior and Energy Approach to
the Fatigue of Shape Memory Alloys // J. Mech. Mater. Struct. 2009. Vol. 4, №
2. P. 395–411.
139. Song D. et al. Damage-based life prediction model for uniaxial low-cycle stress
fatigue of super-elastic NiTi shape memory alloy microtubes // Smart Mater.
Struct. 2015. Vol. 24, № 8. P. 085007.
140. Gerber W. Bestimmung der zulossigenin eisen construcionen. Z. Bayer Arch. Ing
Ver. // Z. Bayer Arch. Ing Ver. 1874. Vol. 6. P. 101–110.
141. Goodman J. Mechanics applied to engineering. 9th ed. London : Longmans,
Green, 1930.
142. Soderberg C.R. APM-52–2 // ASME Trans. 1930. P. 13–28.
143. Morrow J. Fatigue properties of metals, section 3.2 // Fatigue Design Handbook.
Warrendale, PA: No. AE-4. SAE, 1968.
144. Smith, K.N., Watson, P. and Topper T.H. A stress-strain function for the fatigue
of materials // J. Mater. 1970. № 5. P. 767–778.
145. Coffin Jr. L.F. A study of the effects of cyclic thermal stresses on a ductile metal
// Trans. ASME. 1954. Vol. 76. P. 931–950.
146. Manson S.S. NACA TN-2933 “Behavior of materials under conditions of
thermal stress”. National Advisory Committee for Aeronautics. 1953.
147. Socie D.F., Morrow J.D. Review of contemporary approaches to fatigue damage