Page 298 - УДК
P. 298
298
aqueous solutions // Biomaterials. Elsevier, 2003. Vol. 24, № 12. P. 2113–2120.
103. Yokoyama K. et al. Effect of constituent phase of Ni–Ti shape memory alloy on
susceptibility to hydrogen embrittlement // Mater. Sci. Eng. A. Elsevier, 2004.
Vol. 374, № 1–2. P. 177–183.
104. Yokoyama K. et al. Degradation of tensile strength of Ni–Ti superelastic alloy
due to hydrogen absorption in methanol solution containing hydrochloric acid //
Mater. Sci. Eng. A. Elsevier, 2003. Vol. 360, № 1–2. P. 153–159.
105. Yokoyama K., Nagaoka A., Sakai J. Effects of the Hydrogen Absorption
Conditions on the Hydrogen Embrittlement Behavior of Ni–Ti Superelastic Alloy
// ISIJ Int. 2012. Vol. 52, № 2. P. 255–262.
106. Ogawa T. et al. Hydrogen embrittlement of Ni–Ti superelastic alloy in ethanol
solution containing hydrochloric acid // Mater. Sci. Eng. A. Elsevier, 2005. Vol.
393, № 1–2. P. 239–246.
107. Ogawa T. et al. Effects of moisture and dissolved oxygen in methanol and ethanol
solutions containing hydrochloric acid on hydrogen absorption and desorption
behaviors of Ni–Ti superelastic alloy // Mater. Sci. Eng. A. Elsevier, 2006. Vol.
422, № 1–2. P. 218–226.
108. Yokoyama K. et al. Hydrogen embrittlement of Ni–Ti superelastic alloy aged at
room temperature after hydrogen charging // Mater. Sci. Eng. A. Elsevier, 2007.
Vol. 466, № 1–2. P. 106–113.
109. Moitra A., Solanki K.N., Horstemeyer M.F. The location of atomic hydrogen in
NiTi alloy: A first principles study // Comput. Mater. Sci. Elsevier, 2011. Vol.
50, № 3. P. 820–823.
110. Lachiguer A. et al. Modeling of hydrogen effect on the superelastic behavior of
Ni-Ti shape memory alloy wires // Smart Mater. Struct. 2016. Vol. 25, № 11. P.
115047.
111. Gamaoun F. et al. Effect of hydrogen on the tensile strength of aged Ni–Ti
superelastic alloy // J. Intell. Mater. Syst. Struct. SAGE Publications Ltd STM,
2011. Vol. 22, № 17. P. 2053–2059.
112. Letaief W.E., Hassine T., Gamaoun F. Effect of Hydrogen on the Stress