Page 321 - Дисертація ГРЕДІЛЬ_ФМІ
P. 321
321
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Laureys A., Depraetere R., Cauwels M. et al. Use of existing steel
pipeline infrastructure for gaseous hydrogen storage and transport: A review of
factors affecting hydrogen induced degradation. Journal of Natural Gas Science
and Engineering. 2022. Vol. 101. Article No. 104534.
2. Kappes M. A., Perez T. E. Blending hydrogen in existing natural gas
pipelines: Integrity consequences from a fitness for service perspective. Journal
of Pipeline Science and Engineering. 2023. Vol. 3. Article No. 100141.
3. Hrabovskyy R., Kryzhanivskyy Y., Tuts O. et al. Impact of long-term
operation on reliability and durability of natural gas pipeline: Potential
environmental consequences of accidents. Procedia Structural Integrity. 2024.
Vol. 59. P. 112–119.
4. Pluvinage G., Capelle J., Hadj Meliani M. et al. Pipe networks
transporting hydrogen pure or blended with natural gas, design and maintenance.
Engineering Failure Analysis. 2019. Vol. 106. Article No. 104164.
5. Alam T., Islam M. A. Assessing hydrogen embrittlement in pipeline
steels for natural gas-hydrogen blends: Implications for existing infrastructure.
Solids. 2024. Vol. 5. P. 375–393.
6. Guzzini A., Pellegrini M., Saccani C. et al. Hydrogen in natural gas
grids: prospects and recommendations about gas flow meters. International
Journal of Hydrogen Energy. 2024. Vol. 86. P. 343–362.
7. San Marchi C., Somerday B. P. Technical reference on hydrogen
compatibility of materials. Sandia Report SAND2012-7321. 2012. 292 p.
8. Laureys A., Depover T., Petrov R. et al. Influence of sample geometry
and microstructure on the hydrogen induced cracking characteristics under
uniaxial load. Materials Science and Engineering A. 2017. Vol. 690. P. 88–95.
9. Hardie D., Liu S. The effect of stress concentration on hydrogen
embrittlement of a low alloy steel. Corrosion Science. 1996. Vol. 38, No. 5. P. 721–733.

