Page 326 - Дисертація ГРЕДІЛЬ_ФМІ
P. 326
326
50. Findley K. O., O'Brien M. K., Nako H. Critical Assessment 17:
Mechanisms of hydrogen induced cracking in pipeline steels. Materials Science
and Technology. 2015. Vol. 31, Iss. 14. P. 1673–1680.
51. Jack T. A. Investigation of hydrogen induced cracking susceptibility
of API 5L X65 pipeline steels. Master’s Thesis. University of Saskatchewan,
Saskatoon, SK, Canada. 2021.
52. Mohtadi-Bonab M. A., Eskandari M., Szpunar J. A. Texture, local
misorientation, grain boundary and recrystallization fraction in pipeline steels
related to hydrogen induced cracking. Materials Science and Engineering: A.
2015. Vol. 620. P. 97–106.
53. Pressouyre G. M., Bernstein I. M. An example of the effect of
hydrogen trapping on hydrogen embrittlement. Metallurgical Transactions A.
1981. Vol. 12. P. 835–844.
54. Pfeil L. B. The effect of occluded hydrogen on the tensile strength of
iron. Proceedings of the Royal Society of London. Series A, Containing Papers of
a Mathematical and Physical Character. 1926. Vol. 112. P. 182–195.
55. Wipf H. Hydrogen in Metals III: Properties and Applications. Topics
in Applied Physics, Vol. 73. Berlin/Heidelberg, Germany: Springer, 1997. 351 p.
56. Sun B., Wang D., Lu X. et al. Current challenges and opportunities
toward understanding hydrogen embrittlement mechanisms in advanced high-
strength steels: A review. Acta Metallurgica Sinica (English Letters). 2021. Vol.
34, P. 741–754.
57. Martínez-Pañeda E., del Busto S., Niordson C. F. et al. Strain gradient
plasticity modeling of hydrogen diffusion to the crack tip. International Journal
of Hydrogen Energy. 2016. Vol. 41, P. 10265–10274.
58. Ebner A. S. Advanced in-situ electrochemical nanoindentation for
investigating hydrogen-materials interactions. Doctoral Thesis. University of
Leoben, 2011. 210 p.

