Page 327 - Дисертація ГРЕДІЛЬ_ФМІ
P. 327
327
59. Kappes S. K., Vishwakarma M. Hydrogen embrittlement in different
materials: A review. International Journal of Hydrogen Energy. 2018. Vol. 43, Iss.
43. P. 21603–21616.
60. Guzmán A. A., Janisch R. Effects of mechanical stress, chemical
potential, and coverage on hydrogen solubility during hydrogen-enhanced
decohesion of ferritic steel grain boundaries: A first-principles study. Physical
Review Materials. 2024. Vol. 8, Article No. 073601.
61. Kholtobina A., Ecker W., Pippan R. et al. Effect of alloying elements
on hydrogen enhanced decohesion in bcc iron. Computational Materials Science.
2021. Vol. 188, Article No. 110215.
62. Pradhan A., Vishwakarma M., Dwivedi S. K. A review: The impact of
hydrogen embrittlement on the fatigue strength of high strength steel. Materials
Today: Proceedings. 2020. Vol. 26. P. 3015–3019.
63. Song J., Curtin W. A. Atomic mechanism and prediction of hydrogen
embrittlement in iron. Nature Materials. 2013. Vol. 12. P. 145–151.
64. Martin M. L., Dadfarnia M., Nagao A. et al. Enumeration of the
hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement
in structural materials. Acta Materialia. 2019. Vol. 165. P. 734–750.
65. Sofronis P., Robertson I. M. Transmission electron microscopy
observations and micromechanical/continuum models for the effect of hydrogen
on the mechanical behaviour of metals. Philosophical Magazine A. 2002. Vol. 82.
P. 3405–3413.
66. Hirth J. P. Effects of hydrogen on the properties of iron and steel.
Metallurgical Transactions A. 1980. Vol. 11. P. 861–890.
67. Li X., Ma X., Zhang J. et al. Review of hydrogen embrittlement in
metals: Hydrogen diffusion, hydrogen characterization, hydrogen embrittlement
mechanism and prevention. Acta Metallurgica Sinica (English Letters). 2020. Vol.
33. P. 759–773.
68. Wu X., Zhang H., Yang M. et al. From the perspective of new
technology of blending hydrogen into natural gas pipelines transmission:

