Page 329 - Дисертація ГРЕДІЛЬ_ФМІ
P. 329
329
simulations using the embedded atom method potential with pseudo-hydrogen
effects. Computational Materials Science. 2014. Vol. 92. P. 362–371.
77. Wan L., Geng W. T., Ishii A. et al. Hydrogen embrittlement controlled
by reaction of dislocation with grain boundary in alpha-iron. International
Journal of Plasticity. 2019. Vol. 112. P. 206–219.
78. Evaluation of pipeline and pressure vessel steels for resistance to
hydrogen-induced cracking. NACE Standard TM0284-2003. NACE
International, 2003. 12 p.
79. Cauwels M., Depraetere R., De Waele W. et al. Influence of
electrochemical hydrogenation parameters on microstructures prone to hydrogen-
induced cracking. Journal of Natural Gas Science and Engineering. 2022. Vol.
101, Article No. 104533.
80. Li J., Zhao Y., Guo H. et al. Relationship between hydrogen diffusion
and blistering nucleation and growth. Journal of Iron and Steel Research
International. 2016. Vol. 23, Iss. 3. P. 239–247.
81. Zhang L., Shen H., Lu K. et al. Investigation of hydrogen
concentration and hydrogen damage on API X80 steel surface under cathodic
overprotection. International Journal of Hydrogen Energy. 2017. Vol. 42, Iss. 50.
P. 29888–29896.
82. Pérez Escobar D., Miñambres C., Duprez L. et al. Internal and surface
damage of multiphase steels and pure iron after electrochemical hydrogen
charging. Corrosion Science. 2011. Vol. 53, Iss. 10. P. 3166–3176.
83. Dong C. F., Li X. G., Liu Z. Y. et al. Hydrogen-induced cracking and
healing behaviour of X70 steel. Journal of Alloys and Compounds. 2009. Vol.
484, Iss. 1–2. P. 966–972.
84. Skjellerudsveen M., Akselsen O. M., Olden V. et al. The influence of
plastic strain on the effective hydrogen diffusion coefficient and trapping in base
metal and weld simulated heat affected zone of an X70 pipeline steel. In:
Proceedings of EUROCORR-2010 Conference. 2010. Paper No. 9184.

