Page 325 - Дисертація ГРЕДІЛЬ_ФМІ
P. 325
325
40. Nguyen T. T., Park J. S., Nahm S. H. et al. Evaluation of hydrogen
related degradation of API X42 pipeline under hydrogen/natural gas mixture
conditions using small punch test. Theoretical and Applied Fracture Mechanics.
2021. Vol. 113. Article No. 102961.
41. Ronevich J. A., Somerday B. P., San Marchi C. W. Effects of
microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline
steels. International Journal of Fatigue. 2016. Vol. 82. P. 497–504.
42. Krauss G. Steels: Processing, Structure and Performance. 2nd ed.
Materials Park, OH: ASM International; 2005. 682 p.
43. Amaro R. L., Drexler E. S., Slifka A. J. Fatigue crack growth modeling
of pipeline steels in high pressure gaseous hydrogen. International Journal of
Fatigue. 2014. Vol. 62. P. 249–257.
44. Slifka A. J., Drexler E. S., Nanninga N. E. et al. Fatigue crack growth
of two pipeline steels in a pressurized hydrogen environment. Corrosion Science.
2014. Vol. 78. P. 313–321.
45. Koyama M., Akiyama E., Raabe D. et al. Recent progress in
microstructural hydrogen mapping in steels: quantification, kinetic analysis, and
multi-scale characterization. Materials Science and Technology. 2017. Vol. 33,
Iss. 13. P. 1481–1496.
46. Turnbull A. Hydrogen diffusion and trapping in metals. In: Gangloff R.
P., Somerday B. P. (Eds.) Gaseous Hydrogen Embrittlement of Materials in Energy
Technologies. Vol. 1. Sawston, UK: Woodhead Publishing, 2012. P. 89–128.
47. Pressouyre G. M. Trap theory of hydrogen embrittlement. Acta Metall.
1980. Vol. 28. P. 895–911.
48. Dadfarnia M., Sofronis P., Neeraj T. Hydrogen interaction with
multiple traps: Can it be used to mitigate embrittlement? International Journal of
Hydrogen Energy. 2011. Vol. 36. P. 10141–10148.
49. Ohaeri E.G., Qin W., Szpunar J. A critical perspective on pipeline
processing and failure risks in hydrogen service conditions. Journal of Alloys and
Compounds. 2021. Vol. 857. 158240.

