Page 324 - Дисертація ГРЕДІЛЬ_ФМІ
P. 324

324
                         30.  Kirchheim R., Somerday B. P., Sofronis P. et al. Chemomechanical

                  effects on the separation of interfaces occurring during fracture with emphasis on

                  the hydrogen-iron and hydrogen-nickel system. Acta Materialia. 2015. Vol. 99.


                  P . 87–98.
                         31.  Birnbaum H. K., Sofronis P. Hydrogen-enhanced localized plasticity

                  – a mechanism for hydrogen-related fracture. Materials Science and Engineering


                  A. 1994. Vol. 176, No. 1–2. P. 191–202.
                         32.  Lynch S. P. Hydrogen embrittlement and liquid-metal embrittlement


                  in nickel single crystals. Scripta Metallurgica. 1979. Vol. 13. P. 1051–1056.
                         33.  Nagumo  M.  Hydrogen  related  failure  of  steels  –  a  new  aspect.


                  Materials Science and Technology. 2004. Vol. 20, No. 8. P. 940–950.
                         34.  Robertson I. M., Sofronis P., Nagao A. et al. Hydrogen embrittlement


                  understood. Metallurgical and Materials Transactions A. 2015. Vol. 46. P. 2323–2341.

                         35.  Lynch  S. P. Hydrogen  embrittlement  phenomena  and  mechanisms.

                  Corrosion Reviews. 2012. Vol. 30. P. 105–123.

                         36.  Lynch S. P. Mechanisms of hydrogen assisted cracking — a review.

                  In: Proceedings of the International Conference on Hydrogen Effects on Material

                  Behaviour and Corrosion Deformation Interactions, Moran, WY, USA, 22–26

                  September 2002. P. 449–466.
                         37.  Djukic M.,  Bakic  G., Zeravcic V. et  al. The  synergistic  action  and


                  interplay of hydrogen embrittlement mechanisms in steels and iron: Localized
                  plasticity  and  decohesion.  Engineering  Fracture  Mechanics.  2019.  Vol.  216.


                  Article No. 106528.

                         38.  Guedes D., Brassart L., Deschamps A. et al. The role of plasticity and

                  hydrogen flux in the fracture of a tempered martensitic steel: a new design of

                  mechanical test until fracture to separate the influence of mobile from deeply

                  trapped hydrogen. Acta Materialia. 2020. Vol. 186. P. 133–148.

                         39.  Toribio J. HELP versus HEDE in progressively cold-drawn pearlitic

                  steels: between Donatello and Michelangelo. Engineering Failure Analysis. 2018.

                  Vol. 94. P. 157–164.
   319   320   321   322   323   324   325   326   327   328   329