Page 324 - Дисертація ГРЕДІЛЬ_ФМІ
P. 324
324
30. Kirchheim R., Somerday B. P., Sofronis P. et al. Chemomechanical
effects on the separation of interfaces occurring during fracture with emphasis on
the hydrogen-iron and hydrogen-nickel system. Acta Materialia. 2015. Vol. 99.
P . 87–98.
31. Birnbaum H. K., Sofronis P. Hydrogen-enhanced localized plasticity
– a mechanism for hydrogen-related fracture. Materials Science and Engineering
A. 1994. Vol. 176, No. 1–2. P. 191–202.
32. Lynch S. P. Hydrogen embrittlement and liquid-metal embrittlement
in nickel single crystals. Scripta Metallurgica. 1979. Vol. 13. P. 1051–1056.
33. Nagumo M. Hydrogen related failure of steels – a new aspect.
Materials Science and Technology. 2004. Vol. 20, No. 8. P. 940–950.
34. Robertson I. M., Sofronis P., Nagao A. et al. Hydrogen embrittlement
understood. Metallurgical and Materials Transactions A. 2015. Vol. 46. P. 2323–2341.
35. Lynch S. P. Hydrogen embrittlement phenomena and mechanisms.
Corrosion Reviews. 2012. Vol. 30. P. 105–123.
36. Lynch S. P. Mechanisms of hydrogen assisted cracking — a review.
In: Proceedings of the International Conference on Hydrogen Effects on Material
Behaviour and Corrosion Deformation Interactions, Moran, WY, USA, 22–26
September 2002. P. 449–466.
37. Djukic M., Bakic G., Zeravcic V. et al. The synergistic action and
interplay of hydrogen embrittlement mechanisms in steels and iron: Localized
plasticity and decohesion. Engineering Fracture Mechanics. 2019. Vol. 216.
Article No. 106528.
38. Guedes D., Brassart L., Deschamps A. et al. The role of plasticity and
hydrogen flux in the fracture of a tempered martensitic steel: a new design of
mechanical test until fracture to separate the influence of mobile from deeply
trapped hydrogen. Acta Materialia. 2020. Vol. 186. P. 133–148.
39. Toribio J. HELP versus HEDE in progressively cold-drawn pearlitic
steels: between Donatello and Michelangelo. Engineering Failure Analysis. 2018.
Vol. 94. P. 157–164.

