Page 330 - Дисертація ГРЕДІЛЬ_ФМІ
P. 330
330
85. Zhang L., Cao W., Lu K. et al. Effect of the cathodic current density
on the sub-surface concentration of hydrogen in X80 pipeline steels under
cathodic protection. International Journal of Hydrogen Energy. 2017. Vol. 42,
Iss. 5. P. 3389–3398.
86. Hajilou T., De Graeve I., Verbeken K. et al. In situ small-scale
hydrogen embrittlement testing made easy: an electrolyte for preserving surface
integrity at nano-scale during hydrogen charging. International Journal of
Hydrogen Energy. 2018. Vol. 43, Iss. 26. P. 11855–11866.
87. Zhao Y., Seok M.-Y., Choi I.-C. et al. The role of hydrogen in
hardening/softening steel: influence of the charging process. Scripta Materialia.
2015. Vol. 107. P. 46–49.
88. Brass A. M., Chêne J. Hydrogen uptake in 316L stainless steel:
consequences on the tensile properties. Corrosion Science. 2006. Vol. 48, Iss. 10.
P. 3222–3242.
89. Koren E., Hagen C. M. H., Wang D. et al. Experimental comparison
of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the
permeation technique. Corrosion Science. 2023. Vol. 215. Article No. 111025.
90. Gangloff R. P., Somerday B. P. Gaseous Hydrogen Embrittlement of
Materials in Energy Technologies: Mechanisms, Modelling and Future
Developments. Amsterdam: Elsevier, 2012. 520 p.
91. Zhao W., Zhang T., Zhao Y. et al. Hydrogen permeation and
embrittlement susceptibility of X80 welded joint under high-pressure coal gas
environment. Corrosion Science. 2016. Vol. 111. P. 84–97.
92. Krella A. Hydrogen-induced degradation of metallic materials — a
short review. Materials. 2025. Vol. 18. Article No. 597.
93. Liu Q., Atrens A. D., Shi Z. et al. Determination of the hydrogen
fugacity during electrolytic charging of steel. Corrosion Science. 2014. Vol. 87.
P. 239–258.
94. Venezuela J., Tapia-Bastidas C., Zhou Q. et al. Determination of the
equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV
steel. Corrosion Science. 2018. Vol. 132. P. 90–106.

