Page 330 - Дисертація ГРЕДІЛЬ_ФМІ
P. 330

330

                         85.  Zhang L., Cao W., Lu K. et al. Effect of the cathodic current density
                  on  the  sub-surface  concentration  of  hydrogen  in  X80  pipeline  steels  under

                  cathodic protection. International Journal of Hydrogen Energy. 2017. Vol. 42,

                  Iss. 5. P. 3389–3398.

                         86.  Hajilou  T.,  De  Graeve  I.,  Verbeken  K.  et  al.  In  situ  small-scale

                  hydrogen embrittlement testing made easy: an electrolyte for preserving surface

                  integrity  at  nano-scale  during  hydrogen  charging.  International  Journal  of

                  Hydrogen Energy. 2018. Vol. 43, Iss. 26. P. 11855–11866.

                         87.  Zhao  Y.,  Seok  M.-Y.,  Choi  I.-C.  et  al.  The  role  of  hydrogen  in

                  hardening/softening steel: influence of the charging process. Scripta Materialia.

                  2015. Vol. 107. P. 46–49.

                         88.  Brass A. M.,  Chêne J.  Hydrogen  uptake  in  316L  stainless  steel:

                  consequences on the tensile properties. Corrosion Science. 2006. Vol. 48, Iss. 10.

                  P. 3222–3242.

                         89.  Koren E., Hagen C. M. H., Wang D. et al. Experimental comparison

                  of gaseous and electrochemical hydrogen charging in X65 pipeline steel using the
                  permeation technique. Corrosion Science. 2023. Vol. 215. Article No. 111025.

                         90.  Gangloff R. P., Somerday B. P. Gaseous Hydrogen Embrittlement of

                  Materials  in  Energy  Technologies:  Mechanisms,  Modelling  and  Future

                  Developments. Amsterdam: Elsevier, 2012. 520 p.

                         91.  Zhao  W.,  Zhang  T.,  Zhao  Y.  et  al.  Hydrogen  permeation  and

                  embrittlement susceptibility of X80 welded joint under high-pressure coal gas

                  environment. Corrosion Science. 2016. Vol. 111. P. 84–97.

                         92.  Krella A. Hydrogen-induced degradation of metallic materials — a

                  short review. Materials. 2025. Vol. 18. Article No. 597.

                         93.  Liu  Q.,  Atrens  A. D.,  Shi  Z.  et  al.  Determination of  the  hydrogen

                  fugacity during electrolytic charging of steel. Corrosion Science. 2014. Vol. 87.

                  P. 239–258.

                         94.  Venezuela J., Tapia-Bastidas C., Zhou Q. et al. Determination of the

                  equivalent hydrogen fugacity during electrochemical charging of 3.5 NiCrMoV

                  steel. Corrosion Science. 2018. Vol. 132. P. 90–106.
   325   326   327   328   329   330   331   332   333   334   335