Page 335 - Дисертація ГРЕДІЛЬ_ФМІ
P. 335

335

                         131. Cheng A., Chen N.-Z. Fatigue crack growth modelling for pipeline
                  carbon  steels  under  gaseous  hydrogen  conditions.  International  Journal  of

                  Fatigue. 2017. Vol. 96. P. 152–161.

                         132. Dmytrakh  I.,  Leshchak  R.,  Syrotyuk A.  et  al.  Effect  of  hydrogen

                  concentration on fatigue crack growth behaviour in pipeline steel. International

                  Journal of Hydrogen Energy. 2017. Vol. 42, Iss. 9. P. 6401–6408.

                         133. Florisson O. NATURALHY – preparing for the hydrogen economy

                  by using the existing natural gas system as a catalyst: an integrated project. Final

                  Publishable Activity Report, SES6/CT/2004/502661. 2010. 69 p.

                         134.  Shtoyko I., Toribio J., Kharin V. et al. Determination of the residual
                  lifetime  of  gas  pipeline  with  surface  crack  under  internal  pressure  and  soil


                  corrosion. Lecture Notes in Civil Engineering. 2021. Vol. 102. P. 61–73.
                         135. Andreikiv O. E., Hembara O. V., Tsyrul’nyk О. Т. et al. Evaluation of


                  the residual lifetime of a section of a main gas pipeline after long-term operation.

                  Materials Science. 2012. Vol. 48, No. 2. P. 231–238.

                         136. Meng B., Gu C., Zhang L. et al. Hydrogen effects on X80 pipeline
                  steel  in  high-pressure  natural  gas/hydrogen  mixtures.  International  Journal  of

                  Hydrogen Energy. 2017. Vol. 42. P. 7404–7412.

                         137. Zhang S., Li J., An T. et al. Investigating the influence mechanism of

                  hydrogen  partial  pressure  on  fracture  toughness  and  fatigue  life  by  in-situ

                  hydrogen permeation. International Journal of Hydrogen Energy. 2021. Vol. 46.

                  P. 20621–20629.

                         138. Capelle J., Gilgert J., Pluvinage G. A fatigue initiation parameter for

                  gas  pipe  steel  submitted  to  hydrogen  absorption.  International  Journal  of

                  Hydrogen Energy. 2010. Vol. 35. P. 833–843.

                         139. Jallouf  S.,  Capelle  J.,  Pluvinage  G.  Probabilistic  fatigue  initiation

                  assessment diagram pipe steel X52: Influence of hydrogen. Fatigue & Fracture

                  of Engineering Materials & Structures. 2017. Vol. 40. P. 1260–1266.

                         140. Boukharouba T., Tamine T., Niu L., Chehimi C. et al. Pluvinage G.

                  The use of notch stress intensity factor as a fatigue crack initiation parameter.

                  Engineering Fracture Mechanics. 1995. Vol. 52. P. 503–512.
   330   331   332   333   334   335   336   337   338   339   340