Page 336 - Дисертація ГРЕДІЛЬ_ФМІ
P. 336
336
141. Capelle J., Gilgert J., Dmytrakh I. et al. Sensitivity of pipelines with
steel API X52 to hydrogen embrittlement. International Journal of Hydrogen
Energy. 2008. Vol. 33. P. 7630–7641.
142. Hydrogen Transportation Pipelines, IGC 121/04/E. Brussels:
European Industrial Gases Association (EIGA); 2004. 36 p.
143. Faucon L.E., Boot T., Riemslag T. et al. Hydrogen-Accelerated Fatigue of
API X60 Pipeline Steel and Its Weld. Metals. 2023. Vol. 13. Article No. 563.
144. Horníková J., Šandera P., Pokluda J. On the crack tip shielding in
particle reinforced composites. Materials Science Forum. 2005. Vol. 482.
P. 311–314.
145. Horníková J. Shielding effects at the crack front. Vědecké spisy
Vysokého učení technického v Brně. Brno: Vutium, 2007. 29 p.
146. Ritchie R. O. Mechanisms of Fatigue Crack Propagation in Metals,
Ceramics and Composites: Role of Crack Tip Shielding. Materials Science and
Engineering: A. 1988. Vol. 103. P. 15–28.
147. Romaniv O. N., Vol'demarov A. V., Nikiforchin G. N. Factors in
acceleration of crack growth during corrosion fatigue of high-strength steels.
Materials Science. 1981. Vol. 16, No. 5. P. 406–410.
148. Toribio J., González B., Matos J.-C. Micro- and macro-analysis of the
fatigue crack growth in pearlitic steels. Ciência e Tecnologia dos Materiais. 2008.
Vol. 20, No. 1–2. P. 68–74.
149. Toribio J., González B., Matos J.-C. Anisotropic fracture behaviour of
progressively drawn pearlitic steel. Key Engineering Materials. 2011. Vols. 452–
453. P. 1–4.
150. Suresh S., Zamiski G. F., Ritchie R. O. Oxide-induced crack closure:
an explanation for near threshold corrosion fatigue crack growth behavior.
Metallurgical Transactions A. 1981. Vol. 12A. P. 1435–1443.
151. Способ обработки изделий. Авторское свидетельство № 1125266
(СССР). Бюллетень изобретений. 1983. № 43.

