Page 334 - Дисертація ГРЕДІЛЬ_ФМІ
P. 334
334
122. Stewart A. T. The influence of environment and stress ratio on fatigue
crack growth at near threshold stress intensities in low-alloy steels. Engineering
Fracture Mechanics. 1980. Vol. 13. P. 463–478.
123. Toplosky J., Ritchie R. On the influence of gaseous hydrogen in
decelerating fatigue crack growth rates in ultrahigh strength steels. Scripta
Metallurgica. 1981. Vol. 15. P. 905–908.
124. Zawierucha R., Xu K. Hydrogen pipeline steels. Proceedings of
Materials Science and Technology – Materials for the Hydrogen Economy
Symposium. 2005. P. 79–90.
125. Cialone H. J., Holbrook J. H. Effects of gaseous hydrogen on fatigue
crack growth in pipeline steel. Metallurgical Transactions A. 1985. Vol. 16. P.
115–122.
126. Somerday B. P., Sofronis P., Nibur K. A. et al. Elucidating the
variables affecting accelerated fatigue crack growth of steels in hydrogen gas with
low oxygen concentrations. Acta Materialia. 2013. Vol. 61. P. 6153–6170.
127. Suresh S., Ritchie R. O. Mechanistic dissimilarities between
environmentally influenced fatigue-crack propagation at near-threshold and higher
growth rates in lower strength steels. Metal Science. 1982. Vol. 16. P. 529–538.
128. San Marchi C., Somerday B. P., Nibur K. A. et al. Fracture and fatigue
of commercial grade API pipeline steels in gaseous hydrogen. In: ASME Pressure
Vessels & Piping Conference, Vol. 6, Parts A–B. Bellevue, WA: ASME, July 18–
22, 2010. P. 939–948. Paper No: PVP2010-25825.
129. San Marchi C., Somerday B. P., Nibur K. A. et al. Fracture resistance
and fatigue crack growth of X80 pipeline steel in gaseous hydrogen. In: ASME
Pressure Vessels & Piping Conference, Vol. 6, Parts A–B. Baltimore, MD:
ASME Press, July 17–21, 2011. P. 841–849. Paper No: PVP2011-57684.
130. Yamabe J., Yoshikawa M., Matsunaga H. et al. Hydrogen trapping and
fatigue crack growth property of low-carbon steel in hydrogen-gas environment.
International Journal of Fatigue. 2017. Vol. 102. P. 202–213.

