Page 185 - Дисертація_Влад_Христина_Ігорівна
P. 185

[13]   Argueta-Figueroa,  L.,  Morales-Luckie,  R.A.,  Scougall-Vilchis,  R.J.,  Olea-
                  Mejía,  O.F.:  Synthesis,  characterization  and  antibacterial  activity  of  copper,  nickel

                  and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog. Nat.
                  Sci-Mater. 24, 321–328 (2014). https://doi.org/10.1016/j.pnsc.2014.07.002
                  [14]  Davar,  F.,  Fereshteh,  Z.,  Salavati-Niasari,  M.:  Nanoparticles  Ni  and  NiO:

                  synthesis, characterization and magnetic properties. J. Alloys Compd. 476, 797–801
                  (2009). https://doi.org/10.1016/j.jallcom.2008.09.121
                  [15]  Eluri,  R.,  Paul,  B.:  Microwave  assisted  greener  synthesis  of  nickel

                  nanoparticles  using  sodium  hypophosphite.  Mater.  Lett.  76,  36–39  (2012).
                  https://doi.org/10.1016/j.matlet.2012.02.049
                  [16]  Omrani, A.D., Bousnina, M.A., Smiri, L.S., Taibi, M., Leone, D., Schoenstein,

                  F.,  Jouini,  N.:  Elaboration  of  nickel  nanoparticles  by  modified  polyol  process  and
                  their  spark  plasma  sintering,  characterization  and  magnetic  properties  of  the
                  nanoparticles and the dense nano-structured material. Mater. Chem. Phys. 123, 821–

                  828 (2010). https://doi.org/10.1016/j.matchemphys.2010.05.068
                  [17]  Khanna,  P.K.,  More,  P.V.,  Jawalkar,  J.P.,  Bharate,  B.G.:  Effect  of  reducing
                  agent on the synthesis of nickel nanoparticles.  Mater. Lett. 63, 1384–1386 (2009).
                  https://doi.org/10.1016/j.matlet.2009.02.013

                  [18]  Pandian,  C.J.,  Palanivel,  R.,  Dhananasekaran,  S.:  Green  synthesis  of  nickel
                  nanoparticles  using  Ocimum  sanctum  and  their  application  in  dye  and  pollutant
                  adsorption.       Chin.       J.     Chem.        Eng.       23,      1307–1315         (2015).

                  https://doi.org/10.1016/j.cjche.2015.05.012
                  [19]  Bai, L., Yuan, F., Tang, Q.: Synthesis of nickel nanoparticles with uniform size
                  via  a  modified  hydrazine  reduction  route.  Mater.  Lett.  62,  2267–2270  (2008).

                  https://doi.org/10.1016/j.matlet.2007.11.061
                  [20]  Eluri, R., Paul, B.: Synthesis of nickel nanoparticles by hydrazine reduction:
                  mechanistic study and continuous flow synthesis. J. Nanopart. Res. 14, 800 (2012).

                  https://doi.org/10.1007/s11051-012-0800-1
                  [21]  Chen, D.H., Hsieh, C.H.: Synthesis of nickel nanoparticles in aqueous cationic
                  surfactant      solutions.     J.     Mater.       Chem.       12,     2412–2415        (2002).
                  https://doi.org/10.1039/B200603K

                  [22]  Carroll,  K.J.,  Reveles,  J.U.,  Shultz,  M.D.,  Khanna,  S.N.,  Carpenter,  E.E.:
                  Preparation  of  elemental  Cu  and  Ni  Nanoparticles  by  the  polyol  method:  an

                  experimental  and  theoretical  approach.  J.  Phys.  Chem.  C  115,  2656–2664  (2011).
                  https://doi.org/10.1021/jp1104196
                  [23]  Demidova, Y., Simakova, I., Prosvirin, I.: Size-controlled synthesis of Ni and
                  Co metal nanoparticles by the modified polyol method. Int. J. Nanotechnol. 13, 3–14

                  (2016). https://doi.org/10.1504/IJNT.2016.074519


                                                                                                               183
   180   181   182   183   184   185   186   187   188   189   190