Page 184 - Дисертація_Влад_Христина_Ігорівна
P. 184

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
                  [1]    Hu, B., Yu, J., Meng, J., et al. (2022). Porous Ni–Cu Alloy Dendrite Anode

                  Catalysts with High Activity and Selectivity for Direct Borohydride Fuel Cells. ACS
                  Applied          Materials           &         Interfaces,          14(3),         3910–3918.
                  https://doi.org/10.1021/acsami.1c15671

                  [2]    Li, X., Liu, X., Hao, J., et al. (2022). Strong Metal–Support Interactions of Ni-
                  CeO₂  Effectively  Improve  the  Performance  of  a  Molten  Hydroxide  Direct  Carbon
                  Fuel           Cell.          ACS            Omega,             7(28),          24646–24655.

                  https://doi.org/10.1021/acsomega.2c02479
                  [3]    Wang, Y., & Qin, Q.-Z. (2002). A Nanocrystalline NiO Thin-Film Electrode
                  Prepared  by  Pulsed  Laser  Ablation  for  Li-Ion  Batteries.  Journal  of  The

                  Electrochemical Society, 149(7), A873–A878. https://doi.org/10.1149/1.1481715
                  [4]    Hsiao, Y.-S., Chang-Jian, C.-W., Huang, T.-Y., Chen, Y.-L., Huang, J.-H., Wu,
                  N.-J., Hsu, S.-C., Chen, C.-P.: High-performance supercapacitor based on a ternary

                  nanocomposites  of  NiO,  polyaniline,  and  Ni/NiO-decorated  MWCNTs.  J.  Taiwan
                  Inst. Chem. Eng. 134, 104318 (2022). https://doi.org/10.1016/j.jtice.2022.104318
                  [5]    Yang,  K.,  Ren,  Y.:  Nickel-free  austenitic  stainless  steels  for  medical
                  applications.      Sci.     Technol.      Adv.      Mater.      11(1),     014105       (2010).

                  https://doi.org/10.1088/1468-6996/11/1/014105
                  [6]    Hernández,  R.,  Polizu,  S.,  Turenne,  S.,  Yahia,  L.:  Characteristics  of  porous
                  nickel‐titanium alloys for medical applications. Bio-Med. Mater. Eng. 12(1), 37–45

                  (2002). https://doi.org/10.1177/095929892002012001004
                  [7]    Su, B., Cao, Z.-C., Shi, Z.-J.: Exploration of Earth-Abundant Transition Metals
                  (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Acc. Chem.

                  Res. 48(3), 886–896 (2015). https://doi.org/10.1021/ar500345f
                  [8]    Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B.: Synthesis of
                  silver  nanoparticles:  chemical,  physical  and  biological  methods.  Res.  Pharm.  Sci.

                  9(6), 385–406 (2014)
                  [9]    Wang,  Y.,  Herron,  N.:  Nanometer-sized  Semiconductor  Clusters:  Materials
                  Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem. 95(2),
                  525–532 (1991). https://doi.org/10.1021/j100155a009

                  [10]  Hoffman, A.J., Mills, G., Yee, H., Hoffmann, M.: Q-sized Cadmium Sulfide:
                  Synthesis, Characterization, and Efficiency of Photo-initiation of Polymerization of

                  Several Vinylic Monomers. J. Phys. Chem. 96, 5546–5552 (1992).
                  [11]  Bell, A.T.:  The  Impact of  Nanoscience on  Heterogeneous  Catalysis.  Science
                  299(5613), 1688–1691 (2003).
                  [12]  Pandey, A., Manivannan, R.: Chemical reduction technique for the synthesis of

                  nickel nanoparticles. Int. J. Eng. Res. Appl. 5, 96–100 (2015)


                                                                                                               182
   179   180   181   182   183   184   185   186   187   188   189