Page 189 - Дисертація_Влад_Христина_Ігорівна
P. 189
[61] Amendola, V., Scaramuzza, S., Carraro, F., Cattaruzza, E. (2017). Formation
of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid
environment. Journal of Colloid and Interface Science, 489, 18–27.
https://doi.org/10.1016/j.jcis.2016.10.023
[62] Sree Satya Bharati, M., Byram, C., Soma, V.R. (2018). Femtosecond laser
fabricated Ag@Au and Cu@Au alloy nanoparticles for surface enhanced Raman
spectroscopy based trace explosives detection. Frontiers in Physics, 6.
https://doi.org/10.3389/fphy.2018.00028
[63] Chau, J.L.H., Chen, C.Y., Yang, C.C. (2017). Facile synthesis of bimetallic
nanoparticles by femtosecond laser irradiation method. Arabian Journal of
Chemistry, 10, S1395–S1401.
[64] Moniri, S., Hantehzadeh, M., Ghoranneviss, M., Asadabad, M.A. (2017). Au–
Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum
bulk targets in an ethylene glycol solution. European Physical Journal Plus, 132,
318.
[65] Tarasenko, N.V., Butsen, A.V., Nevar, E.A., Rozantsev, V.A. (2005). Plasma
assisted synthesis of bimetallic nanoparticles with laser-aided modification of their
structure. Physics of Chemical Applications of Nanostructures, 501–504.
[66] Machado, T.R., Macedo, N.G., et al. (2018). From complex inorganic oxides to
Ag–Bi nanoalloy: Synthesis by femtosecond laser irradiation. ACS Omega, 3, 9880–
9887.
[67] Lasemi, N., Bomatí Miguel, O., Lahoz, R., Lennikov, V.V., Pacher, U.,
Rentenberger, C., Kautek, W. (2018). Laser-assisted synthesis of colloidal FeWxOy
and Fe/FexOy nanoparticles in water and ethanol. ChemPhysChem, 19, 1414–1419.
[68] Muniz-Miranda, M., Gellini, C., Giorgetti, E., Margheri, G. (2017).
Bifunctional Fe₃O₄/Ag nanoparticles obtained by two-step laser ablation in pure
water. Journal of Colloid and Interface Science, 489, 100–105.
[69] Echegoyen, Y., Suelves, I., Lázaro, M., Moliner, R., Palacios, J. (2007).
Hydrogen production by thermocatalytic decomposition of methane over Ni–Al and
Ni–Cu–Al catalysts: Effect of calcination temperature. Journal of Power Sources,
169, 150–157.
[70] Ashok, J., Subrahmanyam, M., Venugopal, A. (2008). Hydrotalcite structure
derived Ni–Cu–Al catalysts for the production of H₂ by CH₄ decomposition.
International Journal of Hydrogen Energy, 33, 2704–2713.
[71] Cangiano, M.D.L.A., Ojeda, M., et al. (2010). A study of the composition and
microstructure of nanodispersed Cu–Ni alloys obtained by different routes from
copper and nickel oxides. Materials Characterization, 61, 1135–1146.
187