Page 190 - Дисертація_Влад_Христина_Ігорівна
P. 190

[72]  Arán-Ais, R.M., Rizo, R., et al. (2020). Imaging electrochemically synthesized
                  Cu₂O  cubes  and  their  morphological  evolution  under  conditions  relevant  to  CO₂

                  electroreduction. Nature Communications, 11, 3489.
                  [73]  Wang,  H.,  Liu,  D.,  Xu,  C.  (2016).  Directed  synthesis  of  well  dispersed  and
                  highly  active  AuCu  and  AuNi  nanoparticle  catalysts.  Catalysis  Science  &

                  Technology, 6, 7137–7150.
                  [74]  Vysakh, A.B., Babu, C.L., Vinod, C.P. (2015). Demonstration of synergistic
                  catalysis  in  Au@Ni  bimetallic  core–shell  nanostructures.  Journal  of  Physical

                  Chemistry C, 119, 8138–8146.
                  [75]     Srinoi,  P.,  Chen,  Y.T.,  Vittur,  V.,  Marquez,  M.D.,  Lee,  T.R.  (2018).
                  Bimetallic  nanoparticles:  Enhanced  magnetic  and  optical  properties  for  emerging

                  biological applications. Applied Sciences, 8, 1106.
                  [76]     Srinoi,  P.,  Chen,  Y.T.,  Vittur,  V.,  Marquez,  M.D.,  Lee,  T.R.  (2018).
                  Bimetallic  nanoparticles:  Enhanced  magnetic  and  optical  properties  for  emerging

                  biological applications. Applied Sciences, 8, 1106.
                  [77]  Neumeister,  A.,  Jakobi,  J.,  Rehbock,  C.,  Moysig,  J.,  Barcikowski,  S.  (2014).
                  Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser
                  ablation of bulk alloy and consolidated microparticles in water. Physical Chemistry

                  Chemical Physics, 16, 23671–23678.
                  [78]  Garcia, C., Truttmann, V., et al. (2020). Dynamics of Pd dopant atoms inside
                  Au  nanoclusters  during  catalytic  CO  oxidation.  Journal  of  Physical  Chemistry  C,

                  124, 23626–23636.
                  [79]  Zhang, D.S., Goekce, B.,  Barcikowski, S.:  Laser synthesis and  processing  of
                  colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

                  [80]  Zhao, Y., Han, Q., Cheng, Z., Jiang, L., Qu, L.: Integrated graphene systems by
                  laser irradiation for advanced devices. Nano Today 12, 14–30 (2017)
                  [81]  You,  R.,  Liu,  Y.Q.,  Hao,  Y.L.,  Han,  D.D.,  Zhang,  Y.L.,  You,  Z.:  Laser

                  fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2019)
                  [82]  Zhang, J.B., Zhang, C.H., Sha, J.W., Fei, H.L., Li, Y.L., Tour, J.M.: Efficient
                  watersplitting  electrodes  based  on  laser-induced  graphene.  ACS  Appl.  Mater.
                  Interfaces 9, 26840–26847 (2017)

                  [83]  El-Kady,  M.F.,  Ihns,  M.,  Li,  M.,  Hwang,  J.Y.,  Mousavi,  M.F.,  Chaney,  L.,
                  Lech, A.T., Kaner, R.B.: Engineering three-dimensional hybrid supercapacitors and
                  microsupercapacitors  for  high-performance  integrated  energy  storage.  Proc.  Natl.

                  Acad. Sci. U.S.A. 112, 4233–4238 (2015)
                  [84]  Wang,  S.,  Gao,  L.:  Laser-driven  nanomaterials  and  laser-enabled
                  nanofabrication for industrial applications. In: Thomas, S., Grohens, Y., Pottathara,
                  Y.B.  (eds.)  Industrial  Applications  of  Nanomaterials,  pp.  181–203.  Elsevier,

                  Amsterdam (2019)
                                                                                                               188
   185   186   187   188   189   190   191   192   193   194   195