Page 201 - Дисертація_Влад_Христина_Ігорівна
P. 201

A₂B₇-type      alloy.    Int.   J.    Hydrog.      Energy     41,    16142–16147        (2016).
                  doi:10.1016/j.ijhydene.2016.04.227

                  [232] Iwakura,  C.,  Matsuoka,  M.,  Kohno,  T.:  Mixing  effect  of  metal  oxides  on
                  negative electrode reactions in the nickel hydride battery. J. Electrochem. Soc. 141,
                  2306–2309 (1994)

                  [233] Terzieva,  M.,  Khrussanova,  M.,  Peshev,  P.:  Dehydriding  kinetics  of
                  mechanically alloyed mixtures of magnesium with some 3d transition metal oxides.
                  Int. J. Hydrog. Energy 16, 265–270 (1991)

                  [234] Cui, N., Luo, J.L.: Effects of oxide additions on electrochemical hydriding and
                  dehydriding behavior of Mg₂Ni-type hydrogen storage alloy electrode in 6 M KOH
                  solution. Electrochim. Acta 44, 711–720 (1998)

                  [235] Wang, Y.,  Gao, X.P., Lu, Z.W.,  Hu, W.K.,  Zhou,  Z.,  Qu, J.Q.,  Shen,  P.W.:
                  Effects  of  metal  oxides  on  electrochemical  hydrogen  storage  of  nanocrystalline
                  LaMg₁₂–Ni composites. Electrochim. Acta 50, 2187–2191 (2005)

                  [236] Cheng, S.A., Lei, Y.Q., Leng, Y.J., Wang, Q.D.: Electrochemical performance
                  of metal hydride negative electrode modified with bismuth oxide. J. Alloys Compd.
                  264, 104–106 (1998)
                  [237] Zhang,  S.,  Shi,  P.,  Deng,  C.:  Characteristics  of  hydrogen  storage  alloy

                  electrode with cupric oxide additive. Solid State Ionics 177, 1193–1197 (2006)
                  [238] Zhang, P., Wei, X., Liu, Y., Zhu, J., Yu, G.: Effects of metal oxides addition on
                  the performance of La₁.₃CaMg₀.₇Ni₉ hydrogen storage alloy. Int. J. Hydrog. Energy

                  33, 1304–1309 (2008)
                  [239]  Li, M.M., Yang, C.C., Jing, W.T., Jin, B., Lang, X.Y., Jiang, Q.: In situ grown
                  Co₃O₄ on hydrogen storage alloys for enhanced electrochemical performance. Int. J.

                  Hydrog. Energy 41, 8946–8953 (2016)
                  [240] Chen, J., Xu, T., Zhang, Z., Zhang, J., Huang, H., Liu, B., Li, Y., Yuan, J.,
                  Zhang, B., Wu, Y.: Ultra-Fast Hydrolysis Performance of MgH₂ Catalyzed by Ti-Zr-

                  Fe-Mn-Cr-V High-Entropy Alloys. J. Energy Chem. 98, 77–86 (2024)
                  [241] Xiao,  F.,  Wu,  T.,  Yang,  Y.:  Research  progress  in  hydrogen  production  by
                  hydrolysis of magnesium-based materials. Int. J. Hydrog. Energy 49, 696–718 (2024)
                  [242] Huang, H., Xu, T., Chen, J., Zhao, Y., Lv, Y., Liu, B., Zhang, B., Yuan, J., Wu,

                  Y.: Efficient nanocatalysis of Ni/Sc₂O₃@FLG for magnesium hydrolysis of hydrogen
                  generation. J. Mater. Sci. Technol. 175, 235–243 (2024)

                  [243] Rodríguez, M., Urretavizcaya, G., Bobet, J.-L., Castro, F.J.: Effective hydrogen
                  production by hydrolysis of Mg wastes reprocessed by mechanical milling with iron
                  and graphite. J. Alloys Compd. 946, 169352 (2023)
                  [244] Zhang, L., Yong, H., Wang, S., Yan, Z., Xu, Z., Li, Y., Liu, B., Hu, J., Zhang,

                  Y.:  Investigating  of  hydrolysis  kinetics  and  catalytic  mechanism  of  Mg–Ce–Ni


                                                                                                               199
   196   197   198   199   200   201   202   203   204   205   206