Page 199 - Дисертація_Влад_Христина_Ігорівна
P. 199

[205] Kandavel,  M.,  Bhat,  V.V.,  Rougier,  A.,  Aymard,  L.,  &  Nazri,  G.A.  (2008).
                  Improvement  of  hydrogen  storage  properties  of  the  AB₂  Laves-phase  alloys  for

                  automotive application. Int. J. Hydrog. Energy, 33, 3754–3761.
                  [206] Zhu, J., Dai, L., Yu, Y., Cao, J.L., & Wang, L. (2015). A direct electrochemical
                  route from oxides to TiMn₂ hydrogen storage alloy. Chin. J. Chem. Eng., 23, 1865–

                  1870.
                  [207] Wan, C.B., Jiang, X.P., Yin, X.H., & Ju, X. (2020). High-capacity Zr-based
                  AB₂-type alloys as metal hydride battery anodes. J. Alloy Compd., 828, 154402.

                  [208]  Lee, S.M., & Perng, T.P. (1999). Correlation of substitutional solid solution
                  with hydrogenation properties of TiFe₁₋ₓMₓ (M = Ni, Co, Al) alloys. J. Alloy Compd.,
                  291, 254–261.

                  [209]  Boulghallat, M., Jouaiti, A., & Lâallam, L. (2014). Effect of substitution of
                  iron by cobalt on hydrogenation properties of TiFe. Int. J. Sci. Res., 3, 904–908.
                  [210]  Leng, H.Y., Yu, Z.G., Luo, Q., Yin, J., Miao, N., Li, Q., & Chou, K.C. (2020).

                  Effect  of  cobalt  on  microstructure  and  hydrogen  sorption  of  TiFe₀.₈Mn₀.₂.  Int.  J.
                  Hydrog. Energy, 45, 19553–19560.
                  [211] Lei,  Y.Q.,  Wu,  Y.M.,  Yang,  Q.M.,  Wu,  J.,  &  Wang,  Q.D.  (1994).
                  Electrochemical behaviour of some  mechanically alloyed Mg–Ni-based amorphous

                  hydrides. Z. Phys. Chem., 183, 379–384.
                  [212] Zhong,  H.C.,  Xu,  J.B.,  Jiang,  C.H.,  &  Lu,  X.J.  (2018).  Improved  hydrogen
                  storage of Mg₂Ni alloys doped with Al, Mn, Ti. Trans. Nonferrous Met. Soc. China,

                  28, 2470–2477.
                  [213] Tsukahara, M., Takahashi, K., Mishima, T., Isomura, A., & Sakai, T. (1997).
                  Vanadium-based  solid  solution  alloys  with  3D  network  structure  for  high-capacity

                  hydride electrodes. J. Alloy Compd., 253–254, 583–586.
                  [214] Gao,  M.X.,  Zhang,  S.C.,  Miao,  H.,  Liu,  Y.F.,  &  Pan,  H.G.  (2010).
                  Pulverization  mechanism  of  multiphase  Ti–V-based  hydride  electrode  alloy  during

                  cycling. J. Alloy Compd., 489, 552–557.
                  [215] Nygård,  M.M.,  Sørby,  M.H.,  Grimenes,  A.A.,  &  Hauback,  B.C.  (2020).
                  Influence of Fe on structure and hydrogen sorption of Ti–V hydrides. Energies, 13,
                  2874.

                  [216]  Zhao, Y.M., Liu, X.X., Zhang, S., Wang, W.F., Zhang, L., Li, Y., Han, S.M.,
                  &  Xu,  G.C.  (2020). Kinetic  performances  of  superlattice  La–Gd–Mg–Ni  hydrides.

                  Intermetallics, 124, 106852.
                  [217] Ouyang, L.Z., Huang, J.L., Wang, H., Liu, J.W., & Zhu, M. (2017). Progress of
                  hydride  alloys  for  Ni–MH  power  batteries  in  EVs:  a  review.  Mater.  Chem.  Phys.,
                  200, 164–178.

                  [218] Shukla,  A.K.,  Venugopalan,  S.,  &  Hariprakash,  B.  (2001).  Nickel-based
                  rechargeable batteries. J. Power Sources, 100, 125–148.
                                                                                                               197
   194   195   196   197   198   199   200   201   202   203   204