Page 199 - Дисертація_Влад_Христина_Ігорівна
P. 199
[205] Kandavel, M., Bhat, V.V., Rougier, A., Aymard, L., & Nazri, G.A. (2008).
Improvement of hydrogen storage properties of the AB₂ Laves-phase alloys for
automotive application. Int. J. Hydrog. Energy, 33, 3754–3761.
[206] Zhu, J., Dai, L., Yu, Y., Cao, J.L., & Wang, L. (2015). A direct electrochemical
route from oxides to TiMn₂ hydrogen storage alloy. Chin. J. Chem. Eng., 23, 1865–
1870.
[207] Wan, C.B., Jiang, X.P., Yin, X.H., & Ju, X. (2020). High-capacity Zr-based
AB₂-type alloys as metal hydride battery anodes. J. Alloy Compd., 828, 154402.
[208] Lee, S.M., & Perng, T.P. (1999). Correlation of substitutional solid solution
with hydrogenation properties of TiFe₁₋ₓMₓ (M = Ni, Co, Al) alloys. J. Alloy Compd.,
291, 254–261.
[209] Boulghallat, M., Jouaiti, A., & Lâallam, L. (2014). Effect of substitution of
iron by cobalt on hydrogenation properties of TiFe. Int. J. Sci. Res., 3, 904–908.
[210] Leng, H.Y., Yu, Z.G., Luo, Q., Yin, J., Miao, N., Li, Q., & Chou, K.C. (2020).
Effect of cobalt on microstructure and hydrogen sorption of TiFe₀.₈Mn₀.₂. Int. J.
Hydrog. Energy, 45, 19553–19560.
[211] Lei, Y.Q., Wu, Y.M., Yang, Q.M., Wu, J., & Wang, Q.D. (1994).
Electrochemical behaviour of some mechanically alloyed Mg–Ni-based amorphous
hydrides. Z. Phys. Chem., 183, 379–384.
[212] Zhong, H.C., Xu, J.B., Jiang, C.H., & Lu, X.J. (2018). Improved hydrogen
storage of Mg₂Ni alloys doped with Al, Mn, Ti. Trans. Nonferrous Met. Soc. China,
28, 2470–2477.
[213] Tsukahara, M., Takahashi, K., Mishima, T., Isomura, A., & Sakai, T. (1997).
Vanadium-based solid solution alloys with 3D network structure for high-capacity
hydride electrodes. J. Alloy Compd., 253–254, 583–586.
[214] Gao, M.X., Zhang, S.C., Miao, H., Liu, Y.F., & Pan, H.G. (2010).
Pulverization mechanism of multiphase Ti–V-based hydride electrode alloy during
cycling. J. Alloy Compd., 489, 552–557.
[215] Nygård, M.M., Sørby, M.H., Grimenes, A.A., & Hauback, B.C. (2020).
Influence of Fe on structure and hydrogen sorption of Ti–V hydrides. Energies, 13,
2874.
[216] Zhao, Y.M., Liu, X.X., Zhang, S., Wang, W.F., Zhang, L., Li, Y., Han, S.M.,
& Xu, G.C. (2020). Kinetic performances of superlattice La–Gd–Mg–Ni hydrides.
Intermetallics, 124, 106852.
[217] Ouyang, L.Z., Huang, J.L., Wang, H., Liu, J.W., & Zhu, M. (2017). Progress of
hydride alloys for Ni–MH power batteries in EVs: a review. Mater. Chem. Phys.,
200, 164–178.
[218] Shukla, A.K., Venugopalan, S., & Hariprakash, B. (2001). Nickel-based
rechargeable batteries. J. Power Sources, 100, 125–148.
197