Page 198 - Дисертація_Влад_Христина_Ігорівна
P. 198
with A2B7- and A5B19-type superlattice structures. Electrochimica Acta, 184, 257–
263.
[192] Liu, J.J., Li, Y., Han, D., Yang, S.Q., Chen, X.C., Zhang, L., & Han, S.M.
(2015). Electrochemical performance and capacity degradation mechanism of single-
phase La-Mg-Ni-based hydrogen storage alloys. Journal of Power Sources, 300, 77–
86.
[193] Schmitt, R. (1976). Process for manufacturing a negative accumulator
electrode for the reversible storage and restitution of hydrogen. U.S. Patent
3,972,726A, 3 August 1976.
[194] Willems, J.G. (1984). Metal hydride electrodes stability of LaNi5-related
compounds. Philips Journal of Research, 39, 1–94.
[195] . Beccu, K. (1972). Accumulator electrode with capacity for storing hydrogen
and method of manufacturing said electrode. U.S. Patent 3,669,745A, 3 June 1972.
Journal of Less Common Metals, 1987, 129, 13–30.
[196] Willems, J.J.G., & Buschow, K.H.J. (1987). From permanent magnets to
rechargeable hydride electrodes. Journal of Less Common Metals, 129, 13–30.
[197] Hong, K. (2001). The development of hydrogen storage electrode alloys for
nickel hydride batteries. Journal of Power Sources, 96, 85–89.
[198] Young, K., Huang, B., Regmi, R.K., Lawes, G., & Liu, Y. (2010).
Comparisons of metallic clusters imbedded in the surface of AB2, AB5, and A2B7
alloys. Journal of Alloys and Compounds, 506, 831–840.
[199] Young, K., & Nei, J. (2013). The Current Status of Hydrogen Storage Alloy
Development for Electrochemical Applications. Materials, 6(10), 4574–4608.
https://doi.org/10.3390/ma6104574
[200] Young, K., Ouchi, T., & Huang, B. (2012). Effects of annealing and
stoichiometry to (Nd, Mg)(Ni, Al)3.5 metal hydride alloys. Journal of Power
Sources, 215, 152–159.
[201] Young, M., Chang, S., Young, K., & Nei, J. (2013). Hydrogen storage
properties of ZrVₓNi₃.₅–ₓ (x = 0.0–0.9) metal hydride alloys. J. Alloy Compd.
[202] Young, K., Young, M., Chang, S., & Huang, B. (2013). Synergetic effects in
electrochemical properties of ZrVₓNi₄.₅–ₓ (x = 0.0–0.5) metal hydride alloys. J. Alloy
Compd., 560, 33–41.
[203] Yang, C.C., Wang, C.C., Li, M.M., & Jiang, Q. (2017). A start of the
renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an
ultra-long cycle life. J. Mater. Chem. A, 5, 1145–1152.
[204] Chartouni, D., Meli, F., Züttel, A., Gross, K., & Schlapbach, L. (1996). The
influence of cobalt on the electrochemical cycling stability of LaNi₅-based hydride
alloys. J. Alloy Compd., 241, 160–166.
196