Page 198 - Дисертація_Влад_Христина_Ігорівна
P. 198

with A2B7- and A5B19-type superlattice structures. Electrochimica Acta, 184, 257–
                  263.

                  [192]  Liu, J.J., Li, Y., Han, D., Yang, S.Q., Chen, X.C., Zhang, L., & Han, S.M.
                  (2015). Electrochemical performance and capacity degradation mechanism of single-
                  phase La-Mg-Ni-based hydrogen storage alloys. Journal of Power Sources, 300, 77–

                  86.
                  [193] Schmitt,  R.  (1976).  Process  for  manufacturing  a  negative  accumulator
                  electrode  for  the  reversible  storage  and  restitution  of  hydrogen.  U.S.  Patent

                  3,972,726A, 3 August 1976.
                  [194] Willems,  J.G.  (1984).  Metal  hydride  electrodes  stability  of  LaNi5-related
                  compounds. Philips Journal of Research, 39, 1–94.

                  [195] . Beccu, K. (1972). Accumulator electrode with capacity for storing hydrogen
                  and method of manufacturing said electrode. U.S. Patent 3,669,745A, 3 June 1972.
                  Journal of Less Common Metals, 1987, 129, 13–30.

                  [196] Willems,  J.J.G.,  &  Buschow,  K.H.J.  (1987).  From  permanent  magnets  to
                  rechargeable hydride electrodes. Journal of Less Common Metals, 129, 13–30.
                  [197] Hong,  K.  (2001).  The  development  of  hydrogen  storage  electrode  alloys  for
                  nickel hydride batteries. Journal of Power Sources, 96, 85–89.

                  [198] Young,  K.,  Huang,  B.,  Regmi,  R.K.,  Lawes,  G.,  &  Liu,  Y.  (2010).
                  Comparisons of metallic clusters imbedded in the surface of AB2, AB5, and A2B7
                  alloys. Journal of Alloys and Compounds, 506, 831–840.

                  [199] Young, K., & Nei, J. (2013). The Current Status of Hydrogen Storage Alloy
                  Development  for  Electrochemical  Applications.  Materials,  6(10),  4574–4608.
                  https://doi.org/10.3390/ma6104574

                  [200] Young,  K.,  Ouchi,  T.,  &  Huang,  B.  (2012).  Effects  of  annealing  and
                  stoichiometry  to  (Nd,  Mg)(Ni,  Al)3.5  metal  hydride  alloys.  Journal  of  Power
                  Sources, 215, 152–159.

                  [201] Young,  M.,  Chang,  S.,  Young,  K.,  &  Nei,  J.  (2013).  Hydrogen  storage
                  properties of ZrVₓNi₃.₅–ₓ (x = 0.0–0.9) metal hydride alloys. J. Alloy Compd.
                  [202] Young, K., Young, M., Chang, S., & Huang, B. (2013). Synergetic effects in
                  electrochemical properties of ZrVₓNi₄.₅–ₓ (x = 0.0–0.5) metal hydride alloys. J. Alloy

                  Compd., 560, 33–41.
                  [203] Yang,  C.C.,  Wang,  C.C.,  Li,  M.M.,  &  Jiang,  Q.  (2017).  A  start  of  the

                  renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an
                  ultra-long cycle life. J. Mater. Chem. A, 5, 1145–1152.
                  [204] Chartouni, D., Meli, F., Züttel, A., Gross, K., & Schlapbach, L. (1996). The
                  influence of cobalt on the electrochemical cycling stability of LaNi₅-based hydride

                  alloys. J. Alloy Compd., 241, 160–166.


                                                                                                               196
   193   194   195   196   197   198   199   200   201   202   203