Page 163 - Dys
P. 163
163
146. Шрайер Л. Л. Коррозия: Справ. М.: Металлургия, 1981. 632 с.
147. Колотыркин Я. М. Метал и коррозия. М.: Металургія. 1985. 88 с.
148. Panasyuk V. V., Ratych L. V, Dmytrakh I. N. Fatigue crack growth in
corrosive environments. Fatigue Eng. Mater. Struct. 1984. № 1. P. 1–11.
149. Pourbaix M. Occluded corrosion cells and crack tip chemistry. Atom.
Fract. Proc. NATO Adv. Res. Inst. Cokataggio. 1981. P. 603–635.
150. Петров Л. Н., Сопрунюк Н. Г. Коррозионно-механическое
разрушение металлов и сплавов. К.: Наук. Думка. 1991. 214 с.
151. Jianga Y., Chen M. Researches on the fatigue crack propagation of
pipeline steel. Energy Procedia. 2011. Vol. 14. P. 524–528.
152. Gamboa E., Linton V., Law M. Fatigue of stress corrosion cracks in
X65 pipeline steels. Int. J. of Fatigue. 2008. Vol. 30. P. 850–860.
153. Mgonja C. T. The impacts of corrosion in weld joints and surfaces of
oil and gas pipelines: A review. International Journal of Engineering Trends and
Technology. 2017. Vol. 52. No. 2. P. 99–108.
154. Shipilov S. A., May I. L. Structural integrity of aging buried pipelines
having cathodic protection. Engineering Failure Analysis. 2006. Vol. 13. P. 1159–
1176.
155. Olden V., Hauge A.S., Akselsen O. M. The influence of plastic strain on
the effective hydrogen diffusion coefficient and trapping in base metal and weld
simulated heat affected zone of an X70 pipeline steel. Proc. of the Twenty-second
Int. Offshore and Polar Eng. Conference. 2012. P. 329–332.
156. Jiang Y., Li C., Xinjie D. W., Di D. X. The mutual effect of hydrogen
and cyclic plastic deformation on ductility degradation of X65 reeled-pipeline
welded joint. Materials Science and Engineering: A. 2020. Vol. 791. 139739.
157. Mgonja C. T. The consequences of cracks formed on the oil and gas
pipelines weld joints. International Journal of Engineering Trends and Technology.
2017. Vol. 54. No. 4. P. 223–232.