Page 159 - Dys
P. 159
159
107. Cui Z. Y., Liu Z. Y., Wang L. W., Ma H. C., Du C. W., Li X. G.,
Wang X. Effect of pH value on the electrochemical and stress corrosion cracking
behavior of X70 pipeline steel in the dilute dicarbonate solutions. Journal of
Materials Engineering and Performance. November 2015. Vol. 24. No. 11.
P. 4400–4408.
108. Xue H. B., Cheng Y. F. Photo-electrochemical studies of the local
dissolution of a hydrogen-charged X80 steel at crack-tip in a near-neutral pH
solution. Electrochimica Acta. 2010. Vol. 55. P. 5670–5676.
109. Jin T. Y., Liu Z. Y., Cheng Y. F. Effect of non-metallic inclusions on
hydrogen-induced cracking of API5L X100 steel. Ibid. 2010. Vol. 35. P. 8014–
8021.
110. Torres-Islas A., Serna S., Campillo B., Colin J., Molina A. Hydrogen
embrittlement behavior on microalloyed pipeline steel in NS-4 solution. Int J
Electrochem Sci. 2013.Vol. 8. P. 7608–7624.
111. Красовский А. Я., Лохман И. В., Ориняк И. В. Стресс-
коррозионные разрушения магистральных трубопроводов. К. Проблемы
прочности. 2012. № 2. С. 23–43.
112. Yan M., Weng Y. Study on hydrogen absorption of pipeline steel under
cathodic charging. Corrosion Science. 2006. Vol. 48. P. 432–444.
113. Mohtadi-Bonab M. A., Eskandari M., Szpunar J. A. Texture, local
misorientation, grain boundary and recrystallization fraction in pipeline steels
related to hydrogen induced cracking. Materials Science and Engineering A. 2014.
Vol. 620. P. 97–106.
114. Venegas V., Caleyo F., Herrera O., Hernández-Sánchez J., Hallen J. M.
Crystallographic texture helps reduce HIC cracking in pipeline steels. Int. J.
Electrochem. Sci. 2014. Vol. 9, P. 418–425.
115. Capelle J., Dmytrakh I., Pluvinage G. Comparative assessment of
electrochemical hydrogen absorption by pipeline steels with different strength.
Corrosion Science. 2010. Vol. 52. P. 1554–1559.