Page 312 - DISS_NYRKOVA
P. 312
312
150. Wan H., Du C., Liu Z., Song D., Li X. The effect of hydrogen on
stress corrosion behavior of X65 steel welded joint in simulated deep sea
environment. Ocean Engineering. 2016. Vol. 114. P. 216–223.
151. Zhang C., Cheng Y.F. Synergistic effects of hydrogen and stress on
corrosion of X100 pipeline steel in a near-neutral pH solution. Journal of
materials engineering and performance. 2009. Vol. 19. № 9. P. 1284–1289.
152. Torresislas A., Salinasbravo V., Albarran J., Gonzalezrodriguez J.
Effect of hydrogen on the mechanical properties of X-70 pipeline steel in diluted
solutions at different heat treatments. International Journal of Hydrogen
Energy. 2005. Vol. 30. № 12. P. 1317–1322.
153. Ohaeri, E., Eduok, U., & Szpunar, J. Hydrogen related degradation
in pipeline steel: A review. International Journal of Hydrogen Energy. 2018.
Vol. 43. № 31. P. 14584–4617.
154. Cheng Y. Analysis of electrochemical hydrogen permeation through
X-65 pipeline steel and its implications on pipeline stress corrosion cracking.
International Journal of Hydrogen Energy. 2007. Vol. 32. № 9. P. 1269–1276.
155. Cheng Y.F. Fundamentals of hydrogen evolution reaction and its
implications on near-neutral pH stress corrosion cracking of pipelines.
Electrochimica Acta. 2007. Vol. 52. № 7. P. 2661–2667.
156. Marshakov A. I., Ignatenko V. E., Bogdanov R. I., Arabey A. B.
Effect of electrolyte composition on crack growth rate in pipeline steel.
Corrosion Science. 2014. Vol. 83. P. 209–216.
157. Богданов Р. И., Маршаков А. И., Игнатенко В. Э. Влияние
состава раствора на скорость роста трещины в трубной стали Х70 при
статической и циклической нагрузке. Коррозия: материалы, защита. 2011.
№ 11. C. 30–37.
158. Влияние состава коррозионной среды на скорость роста
трещины в трубной стали Х70 / А. Б. Арабей и др. Физикохимия
поверхности и защита материалов. 2011. Т. 47. № 2. C. 208–217.