Page 305 - DISS_NYRKOVA
P. 305
305
89. Liu Z. Y., Li Q., Cui Z. Y., Wu W., Li Z., Du C. W., Li X. G. Field
experiment of stress corrosion cracking behavior of high strength pipeline steels
in typical soil environments. Construction and Building Materials. 2017.
Vol. 148. P. 131–139.
90. Charles E. A., Parkins R. N. Generation of Stress Corrosion Cracking
Environments at Pipeline Surfaces. Corrosion. 1995. Vol. 51. № 7. P. 518–527.
91. Chen W., Sutherby R. L. Crack Growth Behavior of Pipeline Steel in
Near-Neutral pH Soil Environments. Metallurgical and Materials Transactions
A. 2007. Vol. 38. № 6. P. 1260–1268.
92. Effect of hydrogen-induced plasticity on the stress corrosion cracking
of X70 pipeline steel in simulated soil environments / Z. Y. Liu et al. Materials
Science and Engineering: A. 2016. Vol. 658. P. 348–354.
93. Chen W., Kania R., Worthingham R., Boven G. V. Transgranular
crack growth in the pipeline steels exposed to near-neutral pH soil aqueous
solutions: The role of hydrogen. Acta Materialia. 2009. Vol. 57. № 20.
P. 6200–6214.
94. Egbewande A., Chen W., Eadie R., Kania R., Van Boven G.,
Worthingham R., Been J. Transgranular crack growth in the pipeline steels
exposed to near-neutral pH soil aqueous solutions: Discontinuous crack growth
mechanism. Corrosion Science. 2014. Vol. 83. P. 343–354.
95. Parkins R. N., Elices, M., Sanchez-Galvez, V., Caballero, L.
Environment sensitive cracking of pre-stressing steels. 1982. Corrosion Science.
Vol. 22. № 5. P. 379–405.
96. de Sena R. A., Bastos I. N., Platt, G. M. (2012). Theoretical and
experimental aspects of the corrosivity of simulated soil solutions. International
Scholarly Research Notices. 2012. Vol. 2012. p/ 1-6/
97. Stress corrosion cracking of API X-60 pipeline in a soil containing
water / B. W. Pan et al. Materials Science and Engineering: A. 2006. Vol. 434,
№ 1-2. P. 76–81.