Page 343 - Кулик В.В.
P. 343
343
P. 986–999.
367. Richard H.A., Sander M., Fulland M., Kullmer G. Development of
fatigue crack growth in real structures. Engineering Fracture Mechanics.
2008.Vol. 75, No 3–4. P. 331–340.
368. Snyder T. Personal meeting. 2003.
369. Handa K., Kimurab Y., Mishimab Y. Surface cracks initiation on
carbon steel railway wheels under concurrent load of continuous rolling contact
and cyclic frictional heat. Wear. 2010. Vol. 268, No 1–2. P. 50–58.
370. Ekberg A., Sotkovszki P. Anisotropy and fatigue of railway wheels.
International Journal of Fatigue. 2001. Vol. 23, No 1. P. 29–43.
371. Beretta S., Donzella G., Roberti R., Ghidini A. Deep shelling in
railway wheels. Proceedings of the 13th International Wheelset Congress. Rome,
Italy, 2001. P. 17–21.
372. Ringsberg J.W., Loo-Morrey M., Josefson B.L., Kapoor A.,
Beynon J.H. Prediction of fatigue crack initiation for rolling contact fatigue.
International Journal of Fatigue. 2000. Vol. 22, No 3. P. 205–215.
373. Keer L.M., Bryant M.D., Haritos G.H. Subsurface and surface
cracking due to hertzian contact // Journal of Lubrication Technology. 1982. Vol.
104, No 3. P. 347–351.
374. Tournay H.M., Mulder J.M. The transition from the wear to the stress
regime. Wear. 1996. Vol. 191, No. 1–2. P. 107–112.
375. Bernasconi A., Filippini M., Foletti S., Vaudo D. Multiaxial fatigue of
a railway wheel steel under non-proportional loading. International Journal of
Fatigue. 2006. Vol. 28, No 5–6. P. 663–672.
376. Meizoso A., Esnaola J.M., Pérez M. Approximate crack growth
estimate of railway wheel influenced by normal and shear action. Theoretical and
Applied Fracture Mechanics. 1991. Vol. 15, No 2. P. 179–190.
377. Kulyk V.V., Lenkovskiy T.M., Ostash O.P. Mode I and mode II cyclic
crack resistance of wheel steel. Strength of Materials. 2017. Vol. 49, No 2. P. 256–
262.