Page 373 - ЛІТЕРАТУРНИЙ ОГЛЯД
P. 373
373
components. J. Metals. Vol. 44. 1992. P. 34–42.
169. Viswanathan R., Wells C. H. Life prediction of turbine generator rotors.
Technology for the nineties ASME. 1993. P. 1–56.
170. Wilson M. The assessment of remaining creep life of carbon and low–
alloy steels power plant components. Mat. Forum. 1986. № 9. P. 53–66.
171. Структурна мікропошкоджуваність сталей парогонів ТЕС /
О. П. Осташ та ін. Фіз.-хім. механіка матеріалів. 2009. Т. 45, № 3. С. 13 – 23.
172. Федосеева А. Э. Влияние вольфрама на структуру и сопротивление
ползучести 9%Cr-3%Mo сталей: дис. … канд. техн. наук: 05.16.01 /
Белгородский государственный национальный исследовательский
университет. Белгород, 2016. 168 с.
173. Hald J., Korcakova L. Precipitate stability in creep resistant ferritic steels
– experimental investigations and modelling. ISIJ International. 2003. Vol. 43.
P. 420–427.
174. Kadoya Y., Dyson B. E., McLean M. Microstructural stability during
creep of Mo- or W- bearing 12Cr steels. Metallurgical and Materials Transactions
A. 2002. Vol. 33. P. 2549–2557.
175. Swindeman R. W., Sikka V. K., Maziasz P. J. Evaluation of T91 after
130,000 hours in Service. Fatigue, Environmental Factors, and New Materials,
ASME. 1998. Vol. 374. P. 305–312.
176. Qin Y., Gotz G., Blum W. Subgrain structure during annealing and creep
of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Metallurgical and
Materials Transactions A. 2003. Vol. 341. P. 211–215.
177. Kalyanasundaram V. Creep, fatigue and creep-fatigue interactions in
modified 9%Cr-1%Mo (P91) steels. Theses and Dissertations. 2013. Fayetteville:
University of Arkansas. 210 p.
178. Evolution of crystallographic structure of M23C6 carbide under thermal
aging of P91 steel / A. Baltušnikas, et al. J. Mater. Eng. Perform. 2019. Vol. 28.
Iss. 3. P. 1480–1490.
179. Shibli A., Starr F. Some aspects of plant and research experience in the