Page 361 - ЛІТЕРАТУРНИЙ ОГЛЯД
P. 361
361
48. Nishikawa H.-A., Oda Y., Noguchi H. Investigation of the mechanism for
brittle-striation formation in low carbon steel fatigued in hydrogen gas. J Solid Mech
Mater Eng. 2011. Vol. 5. Iss. 8. P. 370–385.
49. Murakami Y., Matsuoka S. Effect of hydrogen on fatigue crack growth of
metals. Eng Fract Mech. 2010. Vol. 77. Iss. 11. P. 1926–1940.
50. Fatigue crack growth under high pressure of gaseous hydrogen in a 15–
5PH martensitic stainless steel: influence of pressure and loading frequency / Z. Sun,
et al. Metall Mater Trans A. 2013. Vol. 44. Iss. 3. P. 1320–1330.
51. Hydrogen trapping and fatigue crack growth property of low-carbon steel
in hydrogen-gas environment / J. Yamabe, et al. Int J Fatigue. 2017. Vol 102.
P. 202–213.
52. Multi-scale observation of hydrogen-induced, localized plastic
deformation in fatigue-crack propagation in a pure iron / Y. Ogawa,et al. Scr Mater.
2017. Vol. 140. P. 13–17.
53. D. Wan, et al.Hydrogen-assisted fatigue crack growth in ferritic steels–a
fractographic study // MATEC Web of Conferences, EDP Sciences (2018).
54. Hydrogen-enhanced fatigue crack growth in steels and its frequency
dependence / H. Matsunaga, et al. Philos. Trans of the Royal Soc. A: Math. Phys.
Eng. Sci. 2017. Vol. 375(2098). P. 20160412.
55. Peculiar temperature dependence of hydrogen-enhanced fatigue crack
growth of low-carbon steel in gaseous hydrogen / S. Matsuoka, et al. Scr. Mater.
2018. Vol. 154. P. 101–105.
56. Лебедев А. А. Новые характеристики деградации материала на
стадии развития рассеянных повреждений. Техническая диагностика и
неразрушающий контроль. 2008. № 4. С. 35–44.
57. Effect of long term operation on degradation of material of main gas
pipelines / P. Maruschak, et al. Mater. Sci. Forum. 2014. Vol. 782. P. 279–283.
58. Миндюк В. Д. Дослідження особливостей структурної деградації
тривало експлуатованих трубних сталей. Науковий вісник ІФНТУНГ. 2015.
Т. 39. № 2. С. 101–110.