Page 361 - ЛІТЕРАТУРНИЙ ОГЛЯД
P. 361

361

                         48. Nishikawa H.-A., Oda Y., Noguchi H. Investigation of the mechanism for

                  brittle-striation formation in low carbon steel fatigued in hydrogen gas. J Solid Mech

                  Mater Eng. 2011. Vol. 5. Iss. 8. P. 370–385.

                         49. Murakami Y., Matsuoka S. Effect of hydrogen on fatigue crack growth of

                  metals. Eng Fract Mech. 2010. Vol. 77. Iss. 11. P. 1926–1940.

                         50. Fatigue crack growth under high pressure of gaseous hydrogen in a 15–

                  5PH martensitic stainless steel: influence of pressure and loading frequency / Z. Sun,

                  et al. Metall Mater Trans A. 2013. Vol. 44. Iss. 3. P. 1320–1330.

                         51. Hydrogen trapping and fatigue crack growth property of low-carbon steel

                  in  hydrogen-gas  environment  /  J. Yamabe,  et  al.  Int  J  Fatigue.  2017.  Vol 102.

                  P. 202–213.

                         52. Multi-scale  observation  of  hydrogen-induced,  localized  plastic

                  deformation in fatigue-crack propagation in a pure iron / Y. Ogawa,et al. Scr Mater.

                  2017. Vol. 140. P. 13–17.

                         53. D. Wan, et al.Hydrogen-assisted fatigue crack growth in ferritic steels–a

                  fractographic study // MATEC Web of Conferences, EDP Sciences (2018).

                         54. Hydrogen-enhanced  fatigue  crack  growth  in  steels  and  its  frequency

                  dependence / H. Matsunaga, et al. Philos. Trans of the Royal Soc. A: Math. Phys.


                  Eng. Sci. 2017. Vol. 375(2098). P. 20160412.
                         55. Peculiar  temperature  dependence  of  hydrogen-enhanced  fatigue  crack


                  growth of low-carbon steel in gaseous hydrogen / S. Matsuoka, et al. Scr. Mater.
                  2018. Vol. 154. P. 101–105.


                         56. Лебедев А. А.  Новые  характеристики  деградации  материала  на
                  стадии  развития  рассеянных  повреждений.  Техническая  диагностика  и


                  неразрушающий контроль. 2008. № 4. С. 35–44.

                         57. Effect  of  long  term  operation  on  degradation  of  material  of  main  gas

                  pipelines / P. Maruschak, et al. Mater. Sci. Forum. 2014. Vol. 782. P. 279–283.

                         58. Миндюк В. Д.  Дослідження  особливостей  структурної  деградації

                  тривало  експлуатованих  трубних  сталей.  Науковий  вісник  ІФНТУНГ.  2015.

                  Т. 39. № 2. С. 101–110.
   356   357   358   359   360   361   362   363   364   365   366