Відгук

на автореферат дисертації Романишина Ростислава Ігоровича «Розвиток ультразвукового методу діагностування пошкодженності металу на основі реєстрації зворотньо-розсіяного сигналу», представлениї на здобуття наукового ступеня кандидата технічних наук зі спеціальності 05.02.10 – діагностика матеріалів і конструкцій

Дисертаційна робота присвячена актуальній тематиці діагностування відповідальних виробів і конструкцій в переддефектному стані. Таке діагностування зводиться до оцінювання стану металу в процесі його експлуатації на предмет виникнення і розвитку пошкоджень областей. Діагностування металу ведеться на основі ультразвукового зондування, реєстрації і статистичної обробки зворотньо-розсіяного структурної матеріалу сигналу. Для реалізації такого підходу в дисертаційній роботі розроблено ряд методів.

Основою розроблених діагностичних технологій є метод статистичної обробки зареєстрованого високочастотного сигналу, який полягає в демодуляції сигналу і нормуванні його до «введеній» енергії. Оцінка «введенеї» енергії отримується на основі зареєстрованого сигналу протягом одного циклу: від початку сигналу, відбитого від границі призма-метал, до кінця першого донного відбитого сигналу. Таке нормування дозволяє зменшити вплив акустичного контакту. В результаті отримується переріз зворотньої розсіювання, який відтворює рівень розсіюної пошкодженності у відповідному об’ємі матеріалу.

Дисертантом розроблено ультразвукову технологію оцінювання стану металу за різних статичних навантаженнях на основі багатократної реєстрації зворотньо-розсіяних сигналів, обрахунку дисперсій цих сигналів, апроксимації розподілу цих дисперсій гауссоїдною та використання параметрів гауссоїду як інформативних для оцінювання стану металу. В авторефераті приведено приклад успішного використання цього підходу.

Автор приводить результати дослідження водневої пошкодженності на основі аналогічного алгоритму. Показано, що дисперсії зворотньо-розсіяних сигналів зростають з тиском наводнення. Крім того, зафіксовано цікавий результат щодо сумісної дії наводнення і деформації синергетичного характеру. Зокрема, дисперсія зворотньо-розсіяного сигналу при скануванні по поверхні зразка після наводнення і деформації є рівномірно розподіленою, натомість дисперсія зворотньо-розсіяного сигналу після повторного наводнення чітко відтворює деформацію зразка.

В розвитку роботи дисерталів наводить результати успішного застосування зворотньо-розсіяного сигналу для картографування адгезійної міцності газотермічного покриття.

Подальші результати стосуються термографічної реконструкції просторового розподілу розсіювальної здатності матеріалу. Автор запропонував безпісківий підхід до термографічної реконструкції, що дозволило усунути громіздкі процедури обрахунку ваги кожного всесвіля в кожній проекції і надало можливість проводити реконструкцію в режимі реального часу.

Щодо томографічних технологій, то тут слід відмітити запропонований автором новий підхід і параметр для оцінювання пошкодженої матеріалу за невпорядкованістю томографічних зображень перерізу зворотнього розсіювання. Такий підхід добре користується способом Лебедєва-Муцкого для оцінювання пошкодженності матеріалу на основі розкиду твердості. Параметр невпорядкованості розраховується за многовидарами томографічних зображень, які (многовиди) вибираються, виходячи з вимог діагностики та умов експлуатації об’єкту контролю (наприклад, вертикальний чи горизонтальний трубопровід), що є природним.
Розроблені технології мають практичне значення в області неруйнівного контролю і технічної діагностики конструкційних матеріалів в переддефектному стані, коли дефект ще несформований, але окремі ділянки в об'ємі матеріалу пошкоджено (виникли пори чи зароджуються тріщини). Практичне значення результатів роботи обумовлене тим, що діагностика матеріалів ведеться стандартними засобами ультразвукового контролю, вимоги до підготовки об'єктів контролю традиційні як для УЗК. Новітні технології базуються на сучасній обробці зворотньо-розсіяних сигналів.

На основі запропонованих технологій розроблене алгорitmічно-програмне забезпечення ультразвукового комп'ютерного томографа, який поєднує в собі функції сучасного дефектоскопа з побудовою В- і С-сканів та томографічної реконструкції.

В авторефераті приведено ряд результатів експериментальної апробації, які автор проводив із зацікавленими організаціями (Рівненська АЕС, «Газотерміко», що свідчить про практичну корисність роботи.

Щодо зауважень, то тут слід відмітити наступне. Автору варто було б співставити свій метод обробки зворотньо-розсійного сигналу шляхом нормування до «введені» енергії з традиційними (напр., за допомогою апроксимації відбитих донних імпульсів експонентою та ін.).

Цікавим було би співставлення результатів оцінювання пошкодженності на основі запропонованого параметра із визначенням параметра пошкодженності Работнова-Качанова (як «дефекту» площи із-за виникнення пор, тріщин), який можна оцінювати за томографічними зображеннями перерізу зворотнього розсіювання.

Загалом вказані недоліки роботи не мають принципового характеру, не заперечують цілі визначення наукових результатів в області технічної діагностики матеріалів, які мають наукове і практичне значення.

Вважаю, що дисертаційна робота «Розвиток ультразвукового методу діагностування пошкодженності металу на основі реєстрації зворотньо-розсійного сигналу» заслуговує позитивної оцінки, а її автор Романишин Ростислав Ігорович — присудження йому наукового ступеня кандидата технічних наук за спеціальністю 05.02.10 — діагностика матеріалів і конструкцій.

Д.т.н., професор, завідувач кафедри Машинознавства та обладнання промислових підприємств Східноукраїнського національного університету ім. В. Даля

О.Г. Архипов

Підпис засвідчує, начальник відділу кафедри

Л.М. Літвінова