ВІДГУК

офіційного опонента на дисертаційну роботу
Долінської Ірини Ярославівни

“Діагностування руйнування матеріалів і визначення залишкового ресурсу елементів конструкцій за локальної пов'язаності”, подану на здобуття наукового ступеня доктора технічних наук зі спеціальністю 05.02.10 – діагностика матеріалів і конструкцій

Актуальність.

Накопичення пошкоджень та структурно-механічної деградації матеріалів і конструкцій є складним, стадійним процесом. Тому, з метою запобігання непрогнозованому руйнуванню об’єктів підвищеного ризику, що працюють під дією довготривалих статичних чи циклічних навантажень у широкому діапазоні температур і робочих середовищ (наприклад, воденьвмісних, корозивних), нейтронного опромінення (нафто- та газопроводи, паропроводи, реєктори АЕС тощо) слід підвищувати фізичну обґрунтованість та достовірність оцінювання їх технічного стану та точність прогнозування залишкового ресурсу.

Для таких об’єктів типовим є те, що зниження міцності і вичерпання ресурсу відбувається внаслідок заповільненого руйнування, яке зумовлюють силові і фізико-хімічні чинники. Тому, як правило, технічне діагностування конструкцій, виконують з застосуванням аналітичних та інструментальних підходів. На сьогодні одним з найефективніших методів діагностування заповільненого руйнування є метод акустичної емісії (АЕ). Це пов’язано з тим, що цей метод є чутливим до розпорошеної та локалізованої пошкодженості матеріалів і конструкцій. Наявні математичні моделі пов’язують параметри сигналів АЕ з механізмами деформування та руйнування матеріалів, проте їх використання має ряд обмежень, які дещо ускладнюють їх застосування, внаслідок:

- складності урахування експлуатаційних умов навантажування, впливу середовища;
- необхідності підвищення точності та достовірності;
- необхідності співставлення результатів одержаних на стадії проектування конструкції, або за лабораторних досліджень та даних натурних і експлуатаційних випробувань.

Саме тому, актуальним є діагностування пошкодження конструкцій на стадії зародження тріщин та об’єктивний моніторинг розвитку виявлених дефектів протягом напрацювання за параметрами акустичної емісії.

Отже, дисертаційна робота Долінської І.Я. є актуальною, оскільки присвячена проблемі підвищення достовірності оцінювання технічного стану матеріалів і конструкцій з тріщинами повзучості за заповільненого руйнування з урахуванням впливу довготривалих статичних і змінних у часі навантажень, фізико-хімічних чинників, а також побудові методів аналітичного опису такого руйнування із застосуванням параметрів сигналів АЕ.

Проведені дослідження є складовою держбюджетної тематики ФМІ ім. Г.В. Карпенка НАН України, низки відомих проектів, вони повністю відповідають пріоритетним напрямкам розвитку науки і техніки України.

Ступінь обґрунтованості наукових положень, висновків та рекомендацій, сформульованих у дисертації.

Чітке формулювання проблеми, шляхів її вирішення та комплексний підхід при її розв’язанні, зокрема, обґрунтування необхідності розробки методології оцінювання пошкодженості матеріалів і конструкцій з використанням сучасних методів математичного опису задовільненого поширення тріщиноподібних дефектів і створення на цій основі методології оцінювання залишкового ресурсу низки конструкційних елементів, дають змогу зробити висновок про високу ступінь обґрунтованості наукових положень, висновків та рекомендацій, сформульованих у дисертації Долінської І.Я.

Достовірність отриманих у роботі результатів.
Про достовірність отриманих у дисертації результатів свідчить проведення великого обсягу теоретичних досліджень на основі фізично обґрунтованих
підходів, які підтверджуються експериментальними даними, розробленням експериментальної бази для встановлення взаємозв'язку параметрів росту тріщин у металевих матеріалах із параметрами акустично-емісійного сигналу, несуперечливість отриманих в роботі результатів загальнозвизнаним поступатам кількісного акустичного опису діагностування тріщиноподібних дефектів та їх опосередкована узгодженість з відомими висновками інших дослідників, обговорення отриманих в роботі результатів на авторитетних наукових конференціях та наукових семінарах.

Новизна отриманих у роботі результатів.

У роботі вирішено важливу наукову проблему, яка полягає в обґрунтованні та записі розрахункових моделей і розробленні на цій основі методів визначення залишкового ресурсу елементів конструкцій за дії силових та фізико-хімічних чинників, а також діагностування стану їх матеріалу і дефектності методом акустичної емісії, зокрема:

- вперше, для елементарного акту заповільненого руйнування матеріалів (стрибка тріщини) сформульовано загальний енергетичний підхід для визначення швидкості і періоду докритичного росту тріщин в елементах конструкцій тривалої експлуатації на основі першого закону термодинаміки;

- вперше отримано розрахункові моделі для діагностування параметрів заповільненого руйнування матеріалів і елементів конструкцій за параметрами сигналів АЕ, що дало можливість розробити нову методику побудови кінетичних діаграм росту тріщин повзучості та воднево-механічних тріщин в параметрах сигналів акустичної емісії;

- розвинуто та узагальнено математичну модель визначення періоду докритичного росту тріщин високотепературної повзучості для плоских тріщин з довільним контуром у тривимірних тілах за довготривалого статичного навантаження;

- вперше розроблено математичну модель визначення залишкового ресурсу елементів конструкцій з тріщинами за блочного навантаження,
застосування якої довело, що витримка в циклі навантаження зменшує довговічність елемента конструкції порівняно із піковими його циклами в блокі;

- запропоновано розрахункову модель визначення ресурсу елементів конструкції, які перебувають під дією воденьвмісного середовища за циклічного деформування з витримкою в циклі навантаження і високих температур за якої визначено міжінспектційні періоди виробничого обладнання;

- розроблено нові розрахункові моделі та оцінено вплив корозивного середовища та нейтрального опромінення на докритичний ріст тріщин повзучості (залишковий ресурс) в елементах конструкції за підвищених температур;

- вперше запропоновано розрахункові моделі для оцінювання впливу корозивно - наводнювальних середовищ на період докритичного росту тріщин високотемпературної повзучості в елементах конструкції за їх маневрового режиму навантаження. Встановлено періоди оптимальної кількості змін навантаження, коли маневровий режим експлуатації можна наближено вважати стаціонарним, а коли - малоцикловою втомою.

- встановлено основні закономірності поширення тріщин, з урахуванням силових параметрів навантажування і зміни міцнісних характеристик матеріалу за водневої деградації і використанням даних АЕ. Отримане кінетичне рівняння поширення тріщин використано для діагностування відшарування наплавленого шару корпусу реактора гідрокрекінгу нафти;

- проведено успішну апробацію розробленої методології на натурних конструктивних елементах, що дозволило підтвердити достовірність та практичну цінність одержаних наукових результатів.

Практична цінність отриманих результатів.

Підвищення достовірності визначення експлуатаційного стану конструкцій тривалої експлуатації за параметрами АЕ – діагностування. Результати роботи
використані для оцінювання експлуатаційного пошкодження, надійності та зниження ризику непрогнозованого руйнування конструкцій тривалої експлуатації, зокрема паропроводів, реакторів АЕС, тощо.

Повнота викладу результатів в опублікованих працях.
Основні положення та результати дисертаційної роботи всебічно виведено у 47 наукових працях, серед яких 2 монографії, 1 навчальний посібник, 1 стандарт організації України, 28 статей у наукових фахових виданнях України та у наукових періодичних виданнях інших держав (з них 18 у виданнях, що входять у наукометричні бази даних Web of Science та Scopus), 15 у матеріалах і тезах доповідей міжнародних і вітчизняних конференцій. Автореферат повною мірою розкриває зміст основних положень дисертації.

Мова та стиль дисертації.
Дисертаційну роботу написано класичною державною мовою, виділення певних розділів обгрунтоване, поданий автором матеріал легко сприймається. Тема та зміст дисертації відповідають паспорту спеціальності 05.02.10 – діагностика матеріалів і конструкцій.

Завдання по змісту дисертації.
1. Відомо, що параметри лінійної механіки руйнування, які широко застосовує автор у роботі, як правило, не використовують для опису кінетики поширення тріщин процесів втоми-повзучості. Накопичення значних пластичних деформацій притаманне повзучості може спричиняти значні похибки опису напружено-деформованого стану у вершині тріщини. Параметри нелінійної механіки руйнування, на мою думку, коректніше описують НДС у вершині тріщин повзучості та втоми-повзучості її універсальнішими. Можливо замість КИН слід було використати С*-інтеграл, J – інтеграл, Сі – інтеграл (параметр Ашока Саксени). Крім того, вони, зараз
легко обчислюються методом скінчених елементів, для будь-яких конструкцій та режимів навантажування.

2. У розділі 2 розроблено розрахункову модель визначення залишкового ресурсу тонкостінних елементів конструкцій з тріщинами за високотемпературного блочного навантаження. Було б бажано уточнити яким конструкціям притаманний такий режим експлуатації?

3. В дисертації (с. 117-122), на основі енергетичного підходу розроблено математичну модель для визначення впливу вібрації (малі амплітуди навантаження з високою частотою) на високотемпературну повзучість. Якою була частота вібрації та яку частку від прикладених напружень становив їх розмах? Чи є цей режим випробувань динамічною повзучістю?

4. Для закономірностей поданих на рис. 3.9, 3.10, 3.15, 3.20 слід було у назвах рисунків зазначити, для яких матеріалів узагальнено результати, вказати параметри навантажування. У підписі до рис. 3.21 слід було вказати що таке «маневровий» режим навантажування, властивості корозивного середовища.

5. У 4-му розділі подано низку математичних моделей визначення кінетики поширення тріщини за локальної повзучості, з використанням силового підходу лінійної механіки руйнування. Проте, було б бажано, уточнити що розуміли під «локальною повзучістю» та зазначити яким чином оцінювати точність та достовірність пропонованих моделей? Окремо слід було підкреслити чим нехтували, а також записати обмеження пропонованих моделей.

6. Подана на рис. 5.19, с. 222 схема навантажування зразка, на мою думку є надто спрощеною, з неї незрозуміло: його розміри, габарити камери, методику вимірювання довжини тріщини, не вказано матеріал зразка, параметри навантажування. Також слід було вказати яким чином оцінювали концентрацію водню у вершині тріщини повзучості. Відсутність цих методичних аспектів дещо ускладнює розуміння результатів.
7. Експлуатаційні параметри А.Ф. Хромченка, подані на с. 297 у дисертації, відсутні у авторефераті, що ускладнює відтворення одержаних автором результатів. Вважаю, їх слід було вказати на рис. 22, або у його назві.

Висновок.

Дисертація Долінської Ірини Ярославівни “Діагностування руйнування матеріалів і визначення залишкового ресурсу елементів конструкцій за локальної повзучості” є завершеною науковою працею, в якій розв'язано важливу науково-технічну проблему – розроблено методологію визначення залишкового ресурсу елементів конструкцій за дії силових та фізико-хімічних чинників, а також діагностування стану їх матеріалу і дефектності методом акустичної емісії на основі низки нових розрахункових моделей повзучості та втому-повзучості.

Зміст автореферату і опублікованих наукових робіт повністю розкривають суть роботи, а висновки і рекомендації є важливими для науки і інженерної практики. Дисертаційна робота Долінської І.Я. за актуальністю проблеми і науковим рівнем вирішення основних завдань відповідає чинним вимогам що ставляться до докторських дисертацій, а її автор заслуговує присудження наукового ступеня доктора технічних наук зі спеціальністі 05.02.10 – діагностика матеріалів і конструкцій.

Завідувач кафедри автоматизації технологічних процесів та виробництв Тернопільського національного технічного університету імені Івана Пулюя, докт. техн. наук, професор

П.О. Марущак

Підпис Марущака П.О. засвідчує: Проректор з наукової роботи Тернопільського національного технічного університету імені Івана Пулюя, докт. техн. наук, професор

Р.М. Рогатинський